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Abstract

In this paper, a two-dimensional model for linear elastic thick shells is deduced from the three-dimensional
problem of a shell thickness 2¢, ¢ > 0. From different scalings on the tangent and normal components of the
displacement u° as widely used in recent works, the limit displacement appears to be Kirchhoff-Love
displacement of a different type. It contains additional terms to those found in the Reissner—Mindlin model
and satisfies more general equations containing the classical terms found in the literature and some new
terms related to the third fundamental form. Such terms could not be well handled in the usual framework.
Shear stresses across the thickness are also computed. This model appears to be appropriate to handle
stiffened shells which, in fact, cannot be considered uniformly as shallow shells. As a by-product it also lays
the mathematical background to justify the Reissner—-Mindlin model for plates and will probably contribute
to a better understanding of the locking phenomenon encountered in computational mechanics. © 1999
Elsevier Science Ltd. All rights reserved.

Nomenclature

a b c first, second and third fundamental form of the surface .S

N L contravariant components of the three-dimensional elasticity tensor of the
shell Q¢ and Q, respectively

Abre contravariant components of the best-first order two-dimensional elasticity

tensor defined on the middle surface S
(AB)" = A"™By, if 4 = (4" (x)), B= (B:)

b.s, b} covariant and mixed components of the curvature tensor b_

B:C=B'C; if B=(B"), C =(C))

det(a ), det(g ) determinant of the metric tensors (¢ ) and (g)

e covariant components of the linearized strain tensor of the middle surface S
fro =10, it/ =(/), 0 = (@)

D), (f) contravariant components of the applied body forces in ° and Q, respectively
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g'.g9;and g , g

(9), (9)

M M, M

N, N

N n=0,1,2,3,4

Igijkl

Rapys
S

u' =), u =), v’

a=(a). 7 =)

x* =(x) and x =(x,)

Greek symbols
e 1

ijs ‘oc[f 3

§» 05, 0%, 9y
e (), e ()

covariant and contravariant components of the metric tensor of the shell
and the shell Q, respectively

contravariant components of the applied surface forces on the borders 0Q°
and 0Q, respectively

mean curvature and Gauss curvature of the shell, respectively

Euclidean space

covariant components of the linearized change of curvature tensor of the
surface S

flexural moment density on the part y, of the border 05

contravariant components in the tangent plane of applied moment on the part
7, of the border 0§

torsional moment density on the part y, of the border 0.5

contravariant components of the flexural moments (or bending moments)
stress tensors M,, M, and M,, respectively

contravariant components of the resultant (or membrane) stress tensors N,
and N, respectively

contravariant components of the full two-dimensional elasticity tensor
defined on the middle surface S

contravariant components of the two-dimensional applied surface density
loads

contravariant components of the two-dimensional applied border density
loads

covariant components of the linearized change in the third fundamental form
of S, or change of Gauss curvature tensor of the surface S

principal radii of the surface S

Riemann—Christoffel tensor of the derivation |

Riemann—Christoffel tensor of the derivation V

reference configuration of the middle surface of the shell

=(vf) or v =(vy) three-dimensional displacement fields and vector fields
defined on O and Q, respectively

two-dimensional displacement and vector fields defined on the middle
surface S

are generic point in the sets Q¢ and Q, respectively.

Christoffel symbols defined on Q° and S, respectively

Kronecker’s symbols

three-dimensional covariant and contravariant components of the linearized
strain tensor associated to the displacement field «’, respectively

variable, defines the half-thickness of the shell

the three-dimensional contravariant components of the stress linearized tensor
of the shell & and Q, respectively

closures of the sets Q° and Q and are the reference configurations of the shell
of thickness 2¢ and 2, respectively
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V. covariant derivation on S
Vo =(0:p) gradient of a mapping ¢ : Q < IR* - IR’.
Other symbols

04 border of the subset A4 in the Euclidean space.
. Euclidean scalar product
matrix scalar product
X Euclidean vector product
[ Euclidean norm
| covariant derivation on Q° or Q.

1. Introduction

Models for thin (or shallow) shells have been widely analyzed since the works of John (1965),
Koiter (1970), who laid, modern foundations, to recent works due to Ciarlet and Miara (1992),
Ciarlet and Lods (1994, 1996), Blouza and Le Dret (1995) and other authors (see references) who
have reviewed and justified the linear models including many practical aspects on the loads and
geometry of the midsurface. The efficiency of the numerical computation of the models so obtained
depends crucially on the ratio x = i/R, where £ is half the thickness and R the absolute value of
the minimum radius of the midsurface or on some small dimensionless parameter (see e.g. Brezzi
and Fortin, 1986). Terms proportional to y are not found in these models (see Bamberger, 1975).
Such terms will involve the third fundamental form of the midsurface which disappears in the limit
analysis even in recent works. In thick shells, energy related to terms proportional to higher orders
(greater or equal to one) of  can be important and such terms may improve not only the numerical
methods, but also, provide much more information on the shear stresses usually important in this
case. Elastic energy stored in these terms may improve elastic behaviour in elasto-plastic analysis
and even mode shapes in dynamic analysis.

In this paper, a two-dimensional model for linear elastic thick shells is deduced from the three-
dimensional problem of a shell of thickness 2¢, ¢ > 0, under the hypothesis that the Lamé constants
A?, G° of the initial shell vary as ¢~°. Different scalings are performed on the tangent and normal
components of the displacement u° as widely used in recent works. However, there is a main
difference in the scaling procedure. Let Q° be the domain occupied by the shell and (¢¢), (¢™) its
covariant and contravariant basis, respectively. Let Q be the homologous scaled domain. In recent
works (see e.g. Ciarlet and Miara, 1992; Ciarlet and Lods, 1994, 1996), (¢%) and (¢**) are assumed
to constitute the covariant and contravariant basis of Q. So Q° and Q have the same metric. All
vectors and tensors in the fixed domain Q, therefore, have their components expressed in basis
depending on ¢. Consequently metric systems in the scaled domain Q are a priori approximated.
In our setting, the exact covariant and contravariant basis in Q are used. Moreover all tensors and
vectors in the scaled or unscaled configurations are expressed in the midsurface basis which is
fixed. This difference is very important and consequently, the displacement obtained in our limit
analysis is more general. It contains additional terms to those found in the Reissner—Mindlin
model and satisfies more general equations containing the classical terms found in the literature
and some new terms related to the third fundamental form as already stated. Shear stresses along



5144 R. Nzengwa, B.H. Tagne Simo | International Journal of Solids and Structures 36 (1999) 5141-5176

the thickness are computed by solving some differential equations slightly different from those
found in thin plate theory (Destuynder, 1980). This model appears to be appropriate to handle
stiffened shells as they cannot be considered uniformly as shallow shells. It also lays the math-
ematical background to justify Reissner—Mindlin model for plates and will probably contribute to
a better understanding of the locking phenomenon encountered in computational mechanics.

This paper is organized as follows: in Section 1, in order to let this paper be self content, and
for notational purposes, we present usual preliminaries in shell theory and functional spaces which
shall not be modified in our approach. Some useful new relations related to this approach will be
demonstrated. Most demonstrations found in the literature will be briefly referred to without
further details. The unscaled and scaled three-dimensional problem will be analyzed in Section 2.
Apart from the difference noted above, the scaling procedure is the same as in Ciarlet et al. (1989),
Ciarlet and Miara (1992), Ciarlet and Lods (1994, 1996) and other authors except on the curvature
tensor where we have introduced a crucial hypothesis not widely used. In Section 3, convergence
results shall be established and shear stresses computed. Unlike in plates and thin shell classical
theory, the limit problem appears to be the equilibrium equations of a shell with a non homogeneous
modulus tensor which depends locally on the thickness and curvature. Terms appearing in this
tensor are proportional to (y”), p = 0. The first-order term of the Taylor expansion of the modulus
tensor also leads to a well defined homogeneous shell equation similar to that found in engineering
literature with some additional terms. A detailed analysis of this first-order two-dimensional model
for thick shells is given in Section 4. Some comments will be made in Section 5.

All vector spaces in IR", n > 1 will be Euclidean with an orthonormal basis whose scalar product
will be denoted by - and vector product by x. We shall also denote v, = dv/0x, = d,v. All indices
in Greek letters take their values in the set {1, 2} while Latin indices range in {1, 2, 3}. The repeated
index convention on summation will be adopted unless otherwise specified. All constants C used
will be independent of the different variables unless otherwise specified. Further notations will be
given in the text or in the glossary.

2. Preliminaries

Most of the results, based on the application of differential geometry on a surface can be found
in Do Carmo (1976), Spivak (1975), Naghdi (1970), Green and Zerna (1968), Lelong and Ferrand
(1963) and Morgenstern (1959).

2.1. Geometry and deformation of a surface

In what follows, S'is a sufficiently regular bounded surface in /R’ defined by a chart ¢: @ = IR* —
IR, such that ¢(@) = S, S has a boundary at least Lipschitz continuous, @ is an open bounded
connected subset of IR*; S and @ denote the closure of S and w, respectively. We shall assume that
the mapping ¢ is of class C° though milder conditions could be used in defining the surface tensors
(see Blouza and Le Dret, 1995). In fact it suffices that ¢ belongs to the space W** (@) which implies
that Sis C' (see Adams, 1975).

Let ¥ =(x', x?) be the coordinate system in S, then the covariant and contravariant tangent
basis of S are defined by (a,) and (a*) where
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a,=0d,0 and a*-a; = 0}.

Let a;(X) = a, X ay/|a; X ay| = a’(X), then a,, a», a; or a', a*, @’ constitute two dual basis in IR*. The
covariant and contravariant metric tensors on S, also called the first fundamental form of S, are
defined by

(@) = (a,-ap) = (a5-a,) = (ay,); (@) = (a"-a") = (a"-a*) = (a™).

An area element is defined by: dS\/; dx' dx* where a = det (a,;). The curvature tensor on S
also called the second fundamental form is defined by

b= (bo:ﬁ) = (ax,ﬁ'a3) = (aﬁ,fx'aB) = _(a3,a'aﬁ) = _(03,/%'%)'

This symmetric tensor is also defined by its mixed components: bj = a*b;;.
Let R, and R, be the eigenvalues of b (also called principal radii) then we shall denote the mean
curvature and Gauss curvature, respectively, by (Do Carmo, 1976; Naghdi, 1970)

A=, —ltb—lb“ K—Li—dt(bﬁ)
=o\r, TR )T W Ty BER g, T AU

The third fundamental form scarcely mentioned in the literature and defined by

Cc = (Ca/}) = (bib/Lﬁ) = (bxlbz) = (c/ia)

will be of paramount interest in our subsequent analysis.
A surface tensor T will either be expressed by its covariant, contravariant or mixed components
(Tnc)’ (Tx)a (T’xﬂ)’ (ch[})a (Tg) Recall that

T =a*d"T,, T,=a,a,T? T,=d"T,

Derivation of tangent basis vectors a, or ¢’ and the normal vector @® = a; are given by Gauss
and Weingarten formulas, respectively, by (Naghdi, 1970; Koiter, 1970; Do Carmo, 1976)

a5 =Tiga,+bya’; oy = —Tpd+bja’; a), =as, = —ba,

where the Christoffel symbols I'}; are defined by
Ly=T}, = aﬂr/zxﬂ = Eaﬂ(aﬂ.ﬁ,o( Uy —upy) = A"y

Covariant derivations on tensors are given by
v, T,=T,,-T}, T, V,T"=T,— ffiy T, V,T"=T¢+ r_% 7'+ l:fy T,
ViTy =Ty, —V,Ts—TpT,; V,T;=T;,+1%T;—T} T,

These formulas also lead to V,a,;, = V,a” =V,05 =0. Let v =v'a,+v'a; = v,a"+v;a° be a
vector field on S, then v, =(V,v, —b,,v:)d* + (V03 +biv))a® = (Vo' —blvsy)a, + (V0P +b,,0%)a,
where we denote V,v* = v3, and V,v; = v;,. The second-order covariant deviations are commutative
on vs;
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Voc[iv3 = Vﬁfxv3 = Ua,aﬁ—riﬁv.z,z,

while they satisfy the relations
Vi, T,— \ T, = _;/fy T, = R).a/}y T; R, By = l:iy,/} - Fi/f,y + 1—_‘;«; I;z);ﬁ - 1—_‘;/;17«,@

and
Riupy = @y Rogy = bybig—boybs,.

Let @ be a displacement of the surface and a¥, a% be the covariant tangent basis vectors and
normal vector, respectively, of the deformed surface, then the strain and change of curvature
tensors are defined by

E,=(ak—a,) and Kk, =(bk—b,).
The linearized part of these tensors (see Bernadou and Ciarlet, 1976) are given by

ey (@) = 5(Vyitg+ Vyit, —2it3b,5); (2.1)

ka’/}(ﬂ) == V“bzal, + b;V/ﬂ/_ll, + b}}Vgﬂv + V1Vﬁa3 - bgbp/;l/?g . (22)
These tensors are widely used in thin shell theory and they express the change in the first and
second fundamental forms. Unlike the first two, the change in the third fundamental form has not
received the same attention. In the present discussion, this tensor will be of paramount interest.
Using the same linearization procedure the following results are obtained:

af =0, +V,a* —bjiy)a, + (Vi +biy)as;  af = — (V0 +b,a,)a" +as
and by simple computation

0.5(@) = 3(c3y— o) = 3 [BLVbLa, + DbV yit, + BybEV i1, + bV, ba, + BV V,iis + bV, V,ii5].

(2.3)

In cases of small displacements only, these linearized parts of the different tensors will be used.
Different formulas obtained in this section will be used in the sequel since a shell will be defined
as usual, using its midsurface.

2.2. Geometry and deformation of a shell

Let S be a sufficiently smooth bounded surface as described above. Let m be the generic point
of S with (x', x?) as coordinates; a,, a, and a, the covariant tangent and normal vectors at m. A
shell Q is defined by

Q={MinQ, OM = O0m+x;a;5; —h < x; <h}.

The surface S is thus the midsurface of the shell Q. The thickness of the shell at each point m is
2h and may depend on (x' x*) = %. We shall further study the family of shells Q° with
—e&h < x; < ¢h, where ¢ is a small parameter.

Let us consider a shell Q as defined above, the covariant vectors are defined by
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g% = OMo« :(5;_X3b;)ava g3 = dj,
and
g1 xg, =(1=2z0+2*K)a, xa, = p(x)a, xa,, x=(%,z), X’ =z.

It is deduced from the definition of H and K that p(x) # 0if |z| < min(|R,|, |R,|). In fact in this
case p(x) > 0. This is true if half the thickness of the shell / satisfies # < min(|R,|, |R,|) at each
point on the midsurface. In the sequel we shall assume that the surface S and the shell Q are such
that

R =(min(|R,|,|R,]) #0 meS) and h<R. (2.4)
Then there exists a constant p, such that
p(x) = py > 0 (2.5)

and g,, ¢-, g5 automatically constitute the covariant basis of the shell Q. We also deduce from eqn
(2.4) that (u}) = (65 —zbj) is invertible and ¢', g%, ¢’ defined by ¢* =(u~")ia", g° = @’ constitute
the contravariant basis of Q. Though (u~") can be computed exactly, for further application, we
shall provide the following lemma:

Lemma 1. Let (uf) = (65— zbj), then

(=3 25 GV=3 b =b @)=y =B
0

Proof. The explicit formula of (1~ ') can also be written as
p(u=")j = 03 +z(b5—2H5%), p(x) =(1—2zH+z°K) = det(up). (2.6)

Let us suppose there exists C, such that

o0

(= Di= Y Z"(C)j

m=0

then

p(u= i = 3. [2"(C);—2Hz""1(C,)j+2""K(C,)j]
m=0

=(Co)j+zI(CF—2H(Co)jl+ ¥, Z"[(C)j—2H(C, )i+ K(C, )il 2.7

m=2
Comparing eqns (2.6) and (2.7) leads to
(Co)i = 0p; (COj=0bj (C)j=2H(C, );—K(C, )}, forn=2. (2.8)
Let
(b°); =03, b'=b, and (b");=by(b""); = bi(b" ")

We shall prove by recurrence that
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(C)j = (")
Now this relation is already true for n = 0, n = 1. Assume it is verified for n—1, then from eqn
(2.8), we have

(C)p =2HOB""Y5—K(b"?)}, forn=2;
= A 2Y,— R(b" )07 = 2 — RSB ),

Now det(b—063) = 0> —20H + K; by applying Cayley-Hamilton’s theorem (Greub, 1976; Nering,
1970) we deduce that

b*—2H+KI=0 and Ko, =2Hb;—b.b5.
Combining this with eqn (2.5) we obtain
(CF = bbi (b2 = Bi(b ) = Db 2)2 = bb™ '),
and the results hold. *

We now recall all useful relations (Eisenhart, 1949; Spivak, 1975; Klingenbert, 1982).
On the metric, basis vectors and volume element:

95 =95=9:"95 9" =9"=9"95 Gu=mon; g7 =@ )i e
9°=95=0, 97 =g9=1 g.=949". 9 =9"95 9-9;=05 9"95=05%
dQ = /gdx'dx*dz = p/adx' dx*dz = pdSdz; g =det(g,); dz=dx’;
On the components of tensors:
T'=¢'T, T,=g,T; T,= ,kgl,T” TV = g*g" Ty T, = gikaj;
On the covariant derivations and Christoffel symbols:
L =T =9 9 = (gzk/+9;kz giw); Ti=Th=g"Ty;
9. =Tigs 9= —Tid's Wg);=uig = uyg',
wy =i+ i and  wy = u,—Thus  guw = gl = 0 = 0;
Th = T4+ T"+ 0T Ty = Tyu—TuT,— T Ty
e = Tix+TuTi =TT Typ— Ty = R T, = Ry T
e = Ui =T + T =101 Ry = Gonp R

It should be noted that the formula T, — T}, is the same in any curvilinear domain not having
necessarily the form of Q.

2.3. Relations between surface and three-dimensional tensors

As we mentioned in the introduction, one important aspect in our approach will be based on
the different relations presented in this paragraph concerning:
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2.3.1. Christoffel symbols
We have g, = pha,;—zb, ga, and g’ =(u~')ia’, then

Z/; =Yup g = (l‘_l)z(féﬁ _Z(Vﬂb; +1:§£/:b;i))
and by introducing the Taylor expansion of (1~ ") (Lemma 1), we deduce the relation
Iy = l:lﬁ""(ﬂfl)”(rvﬁﬂ;-
Similarly
b= = )iby Doy = by T3, =T% =T3; =0;
2.3.2. Vector quantities
Let T =T, 9"+ Ts9° = T*g,+T’g; (95 = a; = a’); we can also write
T=T,a+T;=Ta,+Tas,
since a,, a», ay and a', @*, a’ constitute basis in /R?. From this we obtain the following relations:
P=T,=T=T,;, T,=w.T,, T* =@ '"2T", T,=u ".T,, T*=p2T". In like manner we
obtain
Tj= Ty Tj= e DT T3 = ' iTs, Th = T,
T, =wT;, T;,=@ "I, T3=Ti.
2.3.3. Derivations
Toc/ﬂ = Ty,ﬁ_riﬁ T,«V—Fiﬁ T; = M;[Vﬂ Tv_bvﬂ 73];
Ty =T4+T3T +T5T = ")V, T —b; T,
sz/3 = :u;ija T3/‘o: = TS,a—i_biT/l; T/O’C3 =('u*1)§]_"’\’3’ T,’3oc = f%x+bod,T;';
T/33 = T3/3 = T3,3 = T%% = T3,3- (2-9)

2.3.4. Linearized strain tensor
Using eqn (2.9) we obtain:

Eofﬁ (M) = %(u%"ﬁ + uﬂ/w) = % [.u; (Vﬁav - b\7ﬂ1’73) + :u;; (Votav - bvaa?a )]7
€3 (u) = %(uuﬁ + u3/oc) = %[:u;avﬁ + (1/-[3,01 + b;av)]a
€33(U) = us 3 = i35, (2.10)

It should be noted here that all quantities expressed with —also depend on z = x5;. We have crucially
used the expansion of (u~') and the relations on Christoffel symbols to obtain eqn (2.10) which
shall be of great importance in Section 3. In most recent works only truncated parts of these
formulas have been expressed (Ciarlet and Lods, 1996).
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2.4. Functional spaces

Let S and Q be sufficiently regular as described above. We shall denote the border of Sby y = dS
and assume 7 = 7, U 7, where y, and y, are parts of y with a non-zero measure; 7, 7,, and 7, denote
their closure. We shall also denote by I'y a non-zero measure subset of the border of Q. All
covariant derivation on the surface S and the domain Q will be denoted by V, and /;, respectively.
Derivatives should be understood in the sense of distribution (Adams, 1975). Covariant derivations
on a tensor may be taken on either the covariant, contravariant or mixed components. In any case
the results are indifferently the same.

To begin with, we recall that the different geometric tensors (a,), ig, (13), (u™ )5, (b,4) together
with their covariant or usual derivatives are uniformly bounded because of the regularity of the
chart. Consequently the metrics and Christoffel symbols of the shell are also bounded in the same
way. Next we define the spaces

H'(S) = {nin L*(S), V,nin L*(S)}; [H'(S) = [H'(S)]*;
IH, (S) = {(n,) in IH'(S), n, = 0 on y,};
H'(Q) = {v'in L>(Q),0];in L*(Q)}; [H'(Q) = [H'(Q];
IH! (Q) = {vin IH'(Q),v =0o0nT,};
H*(S) = {nin H'(S), V,nin H'(S)};
H; (S) = {nin H*(S),n = 0,1 = 0 on y,}; (2.11)

v is the unit outer normal vector on the border. The norms on IH'(S) x H*(S) and IH'(Q) are
defined either by the covariant or usual derivatives by (Bernadou and Ciarlet, 1976).

3
1 ma) I = . HmHZLZ(S)Jer3 HVmﬁHZLZ(S)JrZI\VmsIIzLZ(S)JrZﬂI\Vxﬁns\lsz(S);
i=1 a, o «,

3
HU”%,Q: z HvinLz(Q)“‘Hvi/szLz(Q)-

ij=1

We recall that if (7) is a tensor then the L*-norm is given by (Rougee, 1969),
IT|? = J T'T,;dQ = j T'T}dQ.
Q ‘ a

We also recall the following lemma found in Bernadou and Ciarlet (1976).

Lemma 2. Let n =(n,,1n5) and e(n), k() be defined through the formulas (2.1) and (2.2), then
the semi-norm | . | defined by

(1., 13) 17 = <Zﬁ le.s (117 L2 (S) +Z,; ks (m) | 2L2(5)> (2.12)

is equivalent to the induced IH'(S) x H*(S)-norm, in IH, (S) x H; (S). ¢
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Lemma 3 (rigid body displacement). Let Q be a sufficiently smooth bounded domain in /R* and
let v be in IH'(Q), then the following two propositions are equivalent:

(i) v(x) = A+BxOM, x in Q, 4 and B constant vectors in I/R>;
(i) €;(v) = 3y +uy) = 0.

Proof. We first recall that g;x g, = ;4" and ¢g'x ¢ = g, where ¢ = 1/\/‘56'%, E = \/ge,-jk,
g = det (g,); ¢”* and e, are the permutation symbols.

Now if v(x) = A+BxOM, then v, = BxOM,= Bxg, Let B= B"g,, then v,=v;,¢ =
B"g, % g; = B"¢,;9’.

Therefore v, = B"¢,,; and (v;,+v;,)/2 = B"(&,;+ &) /2 = €,(v) = 0.

So (1) =(i1) is thus proved. Suppose €;(v) = 0. We shall first show that the vector B = B"g,,
where B” = ¢"7Q,(v)/2, and Q,(v) = (v;;—v;;)/2 is constant if €,(v) = 0. Since ¢}’ = 0 we deduce
that B, = B/ig,, = 1/2¢"7Q,19,n-

But by computation €, (v) —€4,(v) +€4,,(v) = Rijv,, = g;-(v4;—v 4). This is the curvilinear ver-
sion of the well-known formula in Cartesian coordinate system (Germain and Miiller, 1980). If v
in /H'(Q), then in the sense of distribution v,;,—v 4 = 0 (Lions and Magenes, 1968). We therefore
deduce that

Qi (v) = €(v) —€4(v) = 0
and the vector B is constant. Let B be defined as above, then
(BXxOM), = Bxg; = 1/23minz/(U)gm XGk = 1/23mji8,71kzng(v)gl =Q,(v)yg' = Ul,wkgl >

since €,(v) = 0. So (v—Bx OM), = 0 and this implies that there exists a constant vector 4 such

that v(x) = A+ Bx OM, so (ii) =(i) is verified and the proof is completed. *
Lemma 4 (Korn’s inequality). The semi-norm |v| defined on IH7, (Q) by
0]* = [le@)*LI(Q) = J €’ (v)e;(v) dQ (2.13)
Q

is equivalent to the /H'-normal [|v|| q.

Proof. If |v] = 0, then from Lemma 3, v(x) = 4+ Bx OM. If v = 0 on I, then it is easy to check
that v = 0. So | . | defines a semi-norm in /H, (). Clearly there exists a constant C such that

lv] < Cllv] o

We shall show that there exists a constant C such that
o]0 < Clol.

Assume that this last inequality is false. Then these exists a sequence v" such that
[0"[[,q=1 and [v"| <1/n, nelN.

We can extract a subsequence still denoted v" for simplicity such that v" 5 v (->denotes weak
convergence). We deduce from the semi-continuity of | . ||, o and |.| that

[v]io=1 and [v| =0.
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This is contradictory, since from Lemma 3, |v| = 0 implies that v = 0 and the lemma is proved. ¢

This type of argument is frequent in recent works. We shall frequently use Lax Milgram’s
theorem in establishing existence and uniqueness of coercitive linear variational equations, i.e.,
variational problems of the form a(u,v) = L(v) in which «(.,.) is a continuous bilinear and
coercitive form while L(.) is a linear continuous form. Detail information on distributions,
functional spaces and their applications used here can be found in Brezis (1983), Schwartz (1966),
Adams (1975) and others (see references). Very many versions of Korn’s inequality on a surface
now exist in recent works. Some of the constants depend on the thickness small parameter ¢~ '. It
should be remarked that no such estimations occur here. Korn’s inequality in Q can also be proved
but in a much more laborious way by using the Cartesian version.

3. The three-dimensional problem
3.1. The unscaled problem posed over €

In our subsequent analysis, we consider a shell as defined in Section 1 (Fig. 1). For simplicity
we assume /i = 1m and let

Q' =Sx]—e [0 =T [ JT" YT 7 x[—eel;
T =y x]—e e[, TG =y x]—e,e[JT7 (JT%; TP = Sx{—e); I = Sx{e}

be a sufficiently smooth bounded open subset of IR?, as described in Section 1, with ¢ being a small
parameter. We recall that ¢ is dimensionless because we have chosen 4 = 1m. We shall use

Fig. 1. The three-dimensional clamped shell. The set Q° = S x [—¢, +¢] is the reference configuration of a shell, with
thickness 2¢ and midsurface S, clamped on the portion I'j = y, x [—¢, +¢] of its lateral surface y x [—¢, +¢], (y = S is
the border of S). Body forces (f7) are applied in the shell’s interior Q°* = S'x]—e¢, +¢[. Surface forces (¢g;) are applied
on I =y, x[—¢ +¢] (I JTI%. I" = Sx{—¢} and I¥, = Sx {+¢} are, respectively, the lower and upper faces
while y, x]—e, +¢[ is the free part of the lateral surface.
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the traction—displacement problem as our model-problem. The three-dimensional equilibrium
equations of an elastic isotropic homogeneous shell which occupies a domain QF are:

—dive’ =f* inQ, w'=0 onlj, on'=g, onlj
g=n onl"; g=0rr onl'; ¢=F onj x[—e¢e,
€, () = (uiy+u) /2,
A = Nglgl' + G (gl gl +9lgl); A, G >0,
o/(x) = AL ()eu), o =(0"(x). (3.1

In these equations, f* and ¢° are, respectively, the volume force and surface force, »* the unit
outer normal vector, A’, G° the Lamé moduli, (g;;) the linearized deformation tensor, g the metric
tensor on Q° and A7¥(x?) is the modulus tensor.

Let JH{y = IH () be defined as in eqn (2.11) on &', the equilibrium eqn (3.1) is also equivalent
to the variational equation:

u in IHY,
J o’ (u): e(v) dY = J 1 -des—i—j g -vds=L(v),Yo inIH{, (3.2)
Q, ol T4
where

Theorem 1. We assume f% is in L*(Q%), g¢ in L*(I'}), then the variational eqn (3.2) has a unique
solution.

Proof. The modulus tensor defined in eqn (3.1) is symmetric positive definite and there exists a
constant C(g) such that

L) = J .ag(uﬁ): e(w’)dQ’ = a(e)(u’, u°) = C(z—:)J

Q

e(): e(u) ¥ = C(e) ||,

where L°is a continuous linear from and a(¢)(.,.) is a continuous bilinear form. We deduce from
Korn’s inequality (Lemma 4) that the bilinear form is coercitive. The result is a classical application
of Lax Milgram’s theorem. 'S

3.2. The scaled problem posed over €

We consider the mapping (Fig. 2)
¢x in Q=8Sx[—1,1] > x =(x;,X,6x;) inQ =Sx[—e, +¢

where x and x* are coordinate systems in the closed sets Q and Q° respectively. If v* is a vector field
defined in Q°, then v* - ¢* defines a vector field in Q. All variables X® or X, are related to Q°, while
X or X(¢) are related to Q. We recall that all Greek indices range in {1, 2} while Latin indices range
in {1,2,3}.
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Fig. 2. The three-dimensional unscaled and scaled clamped shell. Each point x° = (x,, x,, x%) of the reference con-
figuration Q° = Sx [—e, +¢] is the image ¢°(x) of the point x = (x;, X,,&~ 'x5) of the set @ = Sx[—1, +1]. The set Q
is independent of &. Q° = Sx]—¢, e[, Ti =70 x[—& +&; Q=Sx]—1, +1[, T =y x[—1, +1], T% = Sx {+e},
I =Sx{—¢; T,=Sx{+1}, T'_=Sx{-1}, I' =y x[—e+e]YT" YI%; =08 TI_ =y x[-1,
+1]JT _(JI',. T is the lower face of the scaled shell, I', is the upper face of the scaled shell. y, x [—1, +1] is the
part of its lateral surface.

We define the scaling as follows:
on the displacement
W (x%) = e2u, () (x), u(x®) = eus(e)(x), forall x* = p*xeQ); (3.3)

on the forces
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fo(x) =7 f,(x0), f5(x°) =f3(x), forallx’ = ¢’xeQ¥,
9x(X) = g.,(x), ¢5(x°) = €g3(x), forallx’ = P‘xel’; (3.4)

on the geometry of the surface (on curvature tensor)

bys = eb,s, bF = éb};; (3.5)
on the Lamé constants

AN =¢A, G =¢7G; (3.6)
or on the Young’s modulus and Poisson’s coefficient

Ei=¢7E, =70 (3.7)

As a consequence of the above scalings we obtain the following relations:
(1)j = (05— 2°by) = (0 —zbf) = s (. )j =0 —zbf) " =(u"
gl () =g (x), g () =g"(x) =0, g7 () =g"(x) =1L
€ (1 (X°) = ()3 Vit — bipits) + ()5 (V. 8, — b, 3)],
= & L[Vl — bygty) + (V1 — boatiy)] = 22, (u(e) (),
€43 (U (X)) = 5ty +145,) = &5 [0 5 + (3, + B3] = g€, (u(2) (X)),
€33(U (X)) = Uz 3 = 33 = €33(u(e)(x)); dQ° =ep(x)dSdz = edQ. (3.9)
We also denote by T, I' =T'_ T, U7 x[—1, 1] the corresponding subsets of the scaled
border 0Q. As a consequence of eqns (3.5) and (3.6) the modulus tensor now satisfies
AP = 6 AT (),
where A7(x) is nothing but 47(x) with A* and G* replaced by A and G. It is also symmetric
positive definite and elliptic i.e. there exists a constant C > 0 such that
A™M(x)e € > Ce,€’. (3.9)

The hypothesis (3.5) also implies that on the scaled domain Q, the covariant and contravariant
basis vector are g' and g, unlike the case in Ciarlet and Miara (1992) where they were replaced by
g.. and g"*. In their analysis only a truncated part of the Taylor expansion of g** appeared in the
limit analysis. The Shallow shell equations are thus justified. The scalings found in eqns (3.3) and
(3.4) and (3.6) and (3.7) have been widely used and justified at length by Ciarlet et al. (1989),
Ciarlet (1990) and others (see references). In fact they appear to be the appropriate scalings which
naturally lead to the justification of Kirchhoff-Love models in linear and non-linear elasticity for
thin shells and plates. Unlike the others, the scaling found in eqn (3.5) has not been widely used.
Naghdi (1970), Green and Zerna (1968), Destuynder (1986) used this type of scaling but in a
different framework. In fact this scaling is unusual but appears to be the best way to consider the
fact that in a thick shell, the scaled domain is locally a three-dimensional body with lesser or no
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The convex part of
midsurface S

C! midsurface S

midsurface S

Fig. 3. Cross section of locally unscaled and scaled slab. N.B. A locally thick slab with (at least) C' midsurface S made
of two parts: one convex and the other concave becomes almost parallelipipedic when scaled.

curvature. To demonstrate, consider an initial domain Q° whose midsurface S* has the diagonal
curvature tensor (b3); b1 = 1/r = b3. Then this same surface in the scaled domain has the diagonal
curvature tensor (B%); Bl = 1/R = Bj3. The scaling implies that R = r/e, that is, the curvature
becomes small when the domain is scaled. For example, locally, a thick spherical slab with a C"
midsurface made of two parts: one convex and the other concave; when scaled, is almost par-
allelipedic (Fig. 3).

Using the scalings defined above the scale problem is now equivalent to find u(¢) in 7H7,;

J [A€; (u(e))€f(v) +2Ge, 5 (u(2))e” (v)] AQ

lz J [A€: (u(e))e3 (v) + A€3 (u(e) ) (v) +4Ge,; (u(e) )€™ (v)] A

€
14J [(A+2G)es;(u(e)e®* (v) +1dQ = J fiv; dQ—i—J g'v;ds = L(v), velHr,. (3.10)
& Jo Q T,
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Theorem 2. The variational equation (3.10) has a unique solution in /H. .

Proof. From the scalings, f;is in L*(Q), ¢g;in L*(T";) < H~"*(T")) and there exist constants C and
& such that for ¢ < g,

L(u(e)) = a(e)(u(e), u(e)) = CJ e(u(e)): e(u(e)) dQ = Clu(e)|*;

Q

again using Korn’s inequality (Lemma 4) and by applying Lax Milgram’s theorem, we deduce the
existence and uniqueness of u(e). *
The solution u(e) of the variational problem satisfies formally the equations:

al(e)+f =0 inQ, (3.11)
u(e) =0 onT,, (3.12)
gleh=g onl,,

K7(e) = €’ (u(e), Kj(e) = ej(ue)), (3.13)
K7 (e) =& '€ (ue), Ki(e) =& '€i(u(e),

Ki(e) = e 2e3(u(e)) = K (e) = Ks3(0), (3.14)
o’ = AK2(e)g”" +2Ge™ (u(e)), (3.15)
() = ¢ '2GK* (u(e)), (3.16)
0 (e) = ¢ *[AK}(e) +2GK5 ()]; (3.17)

and the scaled stresses are related to the real stresses through the relations
of (€ 1 ofs
(2 (X ) = ;O- (8)(X),

o’ (x*) = 0 () (),
0.7 (x°) = ea”?(e) (x). (3.18)
We shall denote by K(¢)(v), formula (3.14) applied to any arbitrary vector field v in IHr. .

Remark. The relation (3.12) should be understood in the sense of trace (Adams, 1975) while the
relation (3.13) should be understood in the sense of the trace operator defined by: Y: H(div, Q) —
IH "*(T',), where H(div, Q) = {(TY); T? is in L*(Q) and div T in L*(Q)} (Ciarlet et al., 1989;
Ciarlet, 1990).

4. The two-dimensional problem

We shall now deduce the limit two-dimensional equation of the sequence of variational eqn
(3.10). To begin with, we first characterize the limit displacement.
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Lemma 5. Let v be in V= {v in IH'(Q), €5(t) =0 in Q; v =0 on [}, then there exist
o =(1,,15) in (H0(S))? x H: (S) such that
US(xl’xzaZ) :;73()(:1,)(2). (41)

Proof. Let ¢5(v) = 0. Let ¢ = (7,, 7;) be the components of v = v,¢9”+v;a’ in the basis @', o, a’.
Then v, = u,v,,v; = 75 (see Section 2.3) and it follows that

€33(0) =035 =033 =0 (4.2)
€3 (V) =3 [1B, s +05,+b,5,] = 0. 4.3)

We deduce from eqn (4.2) that v; does not depend on z = x*; v; = 0 on Iy implies that vy = 7, is in
H'(S) and #; = 0 on y,. Multiplying €,5(v) by (1~ ')% we obtain the equation

U3+ (u l)ﬁbﬁﬁy =(u" 1)3533' (4.4)
From the identity

(™ s = )30, (4.5)
and multiplying eqn (4.4) by (1~ ')} we obtain the equivalent equation: find 5, in H'(Q)

(™ io) s = — (™)™ )30, (4.6)

The eqns (4.3), (4.4) and (4.6) are all equivalent. It is easy to check that

o, = Wny—zos, 4.7
where 5, is in H'(S) is the solution. From eqn (4.7) and v, = ufi; we deduce that
20,05 = phng—7, is in H'(Q) and 0,05 in H'(S).

Therefore v, is in H*(S) and v; = 0 on y,. From v, = 0 on y, we deduce that #, = 0 on y, and
Ny = v35 = 0 on y,. We conclude therefore that (17,, 7;)e(H. (S))* x H: (S). By simple computation
we obtain eqn (4.1) which gives

v, = W0, = Hi[ﬂg’lﬂ_ﬂ%,y] and vy =7 = 17;. L g

Remark. Tt should be noted that V, is a closed subspace of IH }0. We also recall that all
derivations used here should be understood in the sense of distribution and v, = 0 on I', as trace
as was mentioned earlier. We are now able to characterize the limit displacement of the sequence
of displacements u(e).

Theorem 3. As ¢ — 0 the sequence (u(¢)), ¢ > 0 weakly converges in JHr (Q) to a displacement
u(0) in ¥V, and the sequence (K,;(¢)) defined in eqn (3.14) converges weakly in L*(Q) to K.

Proof. The proof is the same as in Ciarlet et al. (1989) and Ciarlet (1990). Using eqn (3.14), the
scaled variational eqn (3.10) reads

J AK(e): K(e)(v) dQ = L(v), (4.8)
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and letting v = u(e) we deduce from eqn (3.9) that there exists a constant C (independent on &)
such that

2G| e(u(e) > < [K(e)[* < Clu(@)l o3 (4.10)

the norms were defined in Section 2. We deduce by applying Korn’s inequality that there exists a
constant C such that

lue)| < C, Je@) <C, [K@E)| <G (4.11)
consequently,

les(e) < Ce,  less ()| < Ce?s (4.12)
and

u(e)—>u(0) in IH} (Q), (4.13)

K(e)—>K in L3(Q). (4.14)

From the semi-continuity of the norms we obtain,
u(0) e V. (4.15)

2
We deduce from Theorem 3 that there exist (&, &;) in (H) (S))* x H;, (S) such that

u,(0)(x', X%, 2) = [ré, (x', x?) —20.&5 (x", ¥¥)]us,
=&, —2(0.&5 +2b.8,) + 22 (bibiE 4 b0.¢5); (4.16)
u;(0)(x', x%,2) = &(x', x?). (4.17)

The limit displacement contains the classical Kirchhoff-Love displacement &,—z0,&; or that
found in the Reissner—Mindlin model, &,+ zy,, (here ¥, = —(0,&5 +2b3E,)). The third term which
is partly proportional to x = 4/R and y’ is implicitly assumed to be small in thin shells as a
consequence of the hypotheses used in the framework.

Let @ = (¢,, &;) be the components of u(0) in the basis a', a*, @’, then

eaﬂ(u(o)) = ea/i(a) _Zka[}(a) +22Qaﬁ(ﬁ)s zZ= X3; (418)

where e,;(1), k,5(i1), O,5(i7) defined in Section 2 are, respectively, the membrane deformation tensor,
the change of curvature tensor and the change in the third fundamental form as was previously
announced. This last term usually disappears in the classical framework.

In order to characterize the limit variational equation, we first recall a lemma due to Ciarlet
(1990) which considerably simplifies the proof as compared to that given in Ciarlet et al. (1989).

Lemma 6. Let we L*(Q) be such that
fowvydx=0 forallv inC*(Q), v=0 onyx[—1,1]y =28,
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where x is the coordinate system, then w = 0. *

Theorem 4. As ¢ — 0 the components of the weak limit symmetric tensor K satisfy:

K. = €,5(u(0)), (4.19)

K,=K?3=0, (4.20)

Kn—K9—Kl=_ 2 € (u(0)) 4.21)
33 3 A+2G o . .

Proof. We obviously obtain eqn (4.19) since u(e) > u(0) in IH{ (Q). Let v = (v',v°,v°) be such
that ve C*(Q), v =0 ony x [—1, 1] and v* = 0. Multiplying eqn (3.11) by ev and integrating, we
obtain, from Green’s formula

2GJ‘ K* (€)v,3 dQ = ¢L(v) —SJ AKD(e)ex(v) +2AK, 4(e)e”’ (v) dQ,

Q
%2G J [K* (0)3]53p/adx =0 (4.22)
Q

because of the uniform boundedness of L(v) and the weak convergence of K(¢), for each fixed v.
We deduce from Lemma 6 that

K (u)ip\/a =0 (4.23)

and multiplying by (,u*‘)ﬁ/p\/g implies that K° = 0 and from Section 2 we also deduce that
K, = 0. Similarly by letting v =(0,0,¢°) and multiplying both sides by &*, passing to the limit,
since K*(¢) — 0, we obtain

A
— A+2GK°‘ (4.24)

J [AK*+ (A+2G)K3]v;,dQ =0 or K3 =
Q

and eqn (4.21) is thus proved since K;, = €%(u(0)). ¢

Theorem 5. Let the limit displacement u(0) be defined through @=({,, &) in
(H,,(S))*> x H; (S).

(1) As ¢ — 0 the sequence of variational problem (3.10) converges to a well defined variational
problem on @ = (&, &;):

- 20N e () )+ 2607 e WO ) |pdzdS— (@) = 0 (4.25)
) Ar2g? 9 e 99" € ((0))e5,(v) |p =0, .

for v = (v',v%,v") defined by 7 = (11,, 13) in (H,,(S))* x H,(S));
(i) The whole family (u(e)) converges weakly to u(0).

Proof. Let ve V;, be used in eqn (3.10). We obtain
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J A(K:(e) + K3 (e))€x(v) + 2GK 4 (e)e™ (v) dQ = L(v); (4.26)
Q

passing to the limit and using Theorem 4, we obtain

A
L A<1 i G)eﬁ(u(O))eZ(U)+2Geaﬁ(u(0))e“/j(v) dQ = L(v). 4.27)

We next apply formulae found in Section 2.2 on €! and €* to obtain eqn (4.25).

Now the left-hand side of eqn (3.25) can be written as
J Ne(u(0)):e(v) dQ = L(v), (4.28)
Q

where

_ 2GA
A+2G’

N™(x) = Ag"g" +G(g" 9" +9"9"), G>0 (4.29)

and consequently there exists a constant C > 0 such that for all (¢;), €5 = 0,

CJ €,5€,5 dQ < J Ne:edQ. (4.30)
Q Q

We shall now show that the left-hand side of eqn (4.25) which is a continuous bilinear form in
(H,,(S))* x H: (S) is elliptic. Let ue Vy, we deduce from eqn (4.30) that

CJ €,5(U)€(u)pdSdz < J Ne(u): e(u) dQ (4.31)

Q
and from eqn (4.18) that there exists a constant C > 0 such that

CJ Jl €,5WU)€,5(u)dzdS < CJ

yJ —1 N

<2e:e+ :e: o+ gk: + ?Q: Q>dS < J Ne(u): €(u) dQ

(4.32)

since there exists a constant p, > 0 such that p > p, (Section 2). We also have

4 Q‘ 22 2 Q‘<4 +1QQ 433)

—eQl=|—"—=e <zee+ - 0: .

3 ﬁ ﬁ ﬁ 3 3
by applying Holder’s inequality |ab| < (a*+b?/2. We therefore obtain the inequality

2 2 2 1

-C| (e:e+k:k)dS<C| |zeie+sk:k+-—-0:0)dS < | Ne(u):e(u)dQ. (4.34)

3 s \3 3 15 o

In conclusion we find that there exists a constant C > 0 such that
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CJ (e(@) : e(@) + k(@) : k(7)) dS < J Ne(u(0)) : e(u(0)) dQ (4.35)

Q

and the coercitivity is established by applying Lemma 2.

The right-hand side of eqn (4.25) is obviously a continuous linear form on & = (,, #3). From the
elipticity established above, we deduce from Lax Milgram that the limit variational eqn (4.25) has
a unique solution in (H, (S))* x H: (S).

The uniqueness of the weak limit also implies that the whole family (u(g)) converges to the
unique limit. 4

Remark. We can also rewrite pN"*(x) found in the left-hand side of eqn (4.25) by using the
expression of (¢) = (u=")Z(u~")fo". If the exact expression of (u~')? is computed and used in
these formulas and if it is assumed that p =~ 1 and (u~")? = &7, these formulas will automatically
lead to the modulus tensor found in the theory of thin shells. If Q is also neglected then eqn (4.25)
will yield the usual variational equation found in thin shells. If different test functions such as

U, = éa_zaai% U3 = €37 orv, = ic{_z(aa€3 +2b;€r)a U3 = é?a (436)

or if the crucial hypotheses (3.5) is modified, for example by, (bi5) = &'(b,5), (b°); =& '(b)};
different limit models will be obtained. These investigations will provoke unnecessarily lengthiness
in this paper. These topics will be widely treated in Nzengwa (1998b).

Theorem 6. As ¢ — 0 the whole family (u(g)),~, converges strongly in /Hy (Q) and the whole
family (K(¢)),-, converges strongly in L3(Q).

Proof. The proof is the same as in Ciarlet et al. (1989) or Ciarlet (1990). We first observe that
the limit displacement «(0) and the tensor K satisfy the equations:

J AK:KdQ = L(u(0)) and J AK(e) : K(2) dQ = L(u(e)). (4.37)

Q

From eqn (3.10) or equivalently eqns (4.9) and (4.37) we obtain

2G| K—K(e)|> < | A(K(e) —K) :(K(e) — K) dQ
_ AK ((K—2K(¢)) dQ+ f AK(e) : K(g) dQ
= i AK :(K—2K(g)) dQ+ L(u(e)). (4.38)

JQ

From the weak convergence of K(¢) to K and u(¢) to u(0), we deduce from eqn (4.37) that
IK—K(&)| - 0. (4.39)

By using the definition of K,;, eqn (4.39) also implies that [€,;(1(0)) —€,5(u(e)) | 5 0and the strong
convergence of u(e) is deduced by applying Korn’s inequality since |€;(u(0)) —e;s(u(e))| also
converges to 0. '3
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We shall denote by H~'(S) and H*(S) the dual space of H(S) and H(S), respectively. We
shall further consider the spaces H'(—1, 1; H'(S)) and H*(—1, 1; H*(S)).

We recall that dQ = p dS dz. The usual compact injections (denoted ) also hold because of
the boundedness of p:

L2(Q) 5 L2(— 1,1 12(S)) > L (— L, L H'(S)) & L2(—1,1; H>(S)). (4.40)

We shall also use Gronwall’s lemma: (Cartan, 1977; Brezis, 1973, 1983; Crouzeix and Mignot,
1983).

Lemma 6. Let there be given a function X in L'([a, b]; IR.) such that dX/d¢ be in L'([a, b]; IR)
and

d

aX(t) < CX(H+C, 4.41)
then

X(1) < Cexp(Cy) (4.42)
and X is consequently bounded in [a, b]. *

Details on the above spaces and the lemma can be found in Brezis (1973). We can now compute
the shear stresses 6%, ¢*.

Theorem 7. Let f* be in L*(Q), f* in H'(Q), ¢' in L*(T')), then as ¢ — 0 the scaled stresses o*’(¢),
% (¢), 6% (¢) defined by eqns (3.15)—(3.17) converge strongly as follow:

o’ () = 6 = AeX(u(0))g*” +2Ge** (u(0)) in L*(Q); (4.43)
c”(e) » o inH'(—1,1; H '(S)); (4.44)
03(@) - 0¥ in H(—1,1; H (S)); (4.45)
6>, ¢ are solutions to the equations
c?eH'(—1,1;H (S)); (4.46)
d o3
% 2% 6" + Tl o = — (0% + o™ + Tho™) —f* (4.47)
z
o3 (—1) = —h*; (4.48)
o (1) = % ; (4.49)
o e H>(—1,1; H(S)):; (4.50)
do*? 33 3 3 3 3
dZ +1"§30»» = _(6’“06_1’_1—‘0”0.‘50(4_1_‘/[;’16»1’) _f 5 (451)
o3 (—1) = — 3 ; (4.52)

a3 (1) =i . (4.53)
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Proof. From the definition of 6*/(¢) eqn (3.15), the convergence of K3(¢) (Theorem 4) and the
strong convergence of K;;(¢) (Theorem 6), we deduce eqn (4.43). From the existence of the solution
u(e) (Theorem 2) and the definitions (3.15)—(3.17) it follows that

03 (e) isin L*(Q) > L*(— 1,1 H'(S)) and 6% (g) isin L*(Q) - L*(—1,1; H >(S)).
From eqns (3.11)—(3.13) we have

A7) 205070+ Tho™' ) = — @0+ T o)+ Tho™ ()~ (4.54)
@) (=1) = — i ; (4.55)
170 1050 = — 0@+ The" @) + The™ @)~/ (4.56
) (—1) = — i (4.57)

Equations (4.54)—(4.57) are differential equations with Lipschitz continuous vector field. They
therefore have solutions defined for all z in [—1, 1] which satisfy the initial conditions (4.55) and
(4.57). The right-hand of eqn (4.54) is uniformly bounded because of eqn (4.43). Multiplying eqn
(4.54) by 6%(¢), integrating over Q and applying Holder’s inequality, we deduce that

d
Ll @I < lo” @l +C (4.58)

o

and from Lemma 6, 6*(¢) is bounded in L*(Q); consequently converges weakly in L*(Q) to ¢** and
strongly converges in L*(—1, 1; H'(S)). We deduce from this convergence that eqns (4.47) and
(4.48) are satisfied.

Multiplying eqn (4.56) by 6¥(¢), integrating over Q and applying Holder’s inequality we deduce
in the same way through Lemma 6 and the boundedness of ¢**(¢) that ¢**(¢) is bounded in L*(Q)
and consequently converges weakly to ¢* in L*(Q) and strongly in L*(—1, 1; H*(S)). Similarly
we deduce that eqns (4.51) and (3.52) are satisfied.

The eqn (4.47) also implies that do**/dz is in L*(—1, 1; H'(S)) and therefore ¢* is in H'(—1,
1; H~'(S)). Similarly we deduce from eqn (4.51) that 6 (¢) is in H*(—1, 1; H=*(S)).

The eqns (4.47) and (4.51) are also equivalent to

of+o5+f*=0 inQ (4.59)
oif +0+f>=0 inQ. (4.60)
Let v = (v,,v3), v, in H(S); v3 = 205, By in H3(S) be used in the scaled equation (3.10). Then

€53(v) = 7; and passing to the limit, we obtain

J (7€, (0) + 0,5 (0) 03y (0) +0 €35 (1) A2
Q

sz“vadQ—i—J(fzﬁ +h_“)vadS+J
Q S

Q

s d9+f(ﬁi—ﬁ3)ﬁ3 ds. (4.61)

N
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Multiplying eqn (4.59) by v, and eqn (4.60) by v; and integrating, from Green’s formula and eqn
(4.61), we obtain

J(aﬁu)—aﬁ(—l))va d5+J (@ (1) + (= 1))55dS

= f (. + 1), dS+J(h'3+—E3)53 ds.  (4.62)
S

N

Since v, and 75 are arbitrary test functions, we deduce that

o) = (= )+ + 1~ =1, (4.63)
()= - (=D +h -1 =h; (4.64)
and eqns (4.49) and (4.53) are satisfied. *

Remark. Though the convergence of the shear stresses 6**(¢) and ¢ (¢) are strong in the spaces
H'(—1,1; H'(S)) and H*(—1, 1; H*(S)), respectively, they are in fact very ‘weak’. Because ¢°*
belongs to H*(—1, 1; H*(S)) it should be noted that ¢* can be a localized stress and such a stress
distribution is of paramount interest in junctions of multi-structures.

From the convergence established and the relation between the scaled and de-scaled stresses
(3.18) we deduce that the real stress

G () >0 as e—0 inLX(Q). (4.65)

Unlike in plate theory (Destuynder, 1986) the exact formula of ¢** and ¢** cannot be expressed
but these stresses can be computed numerically by approximating eqns (4.47) and (4.48) and (4.51)
and (4.52).

In the exact two-dimensional problem (4.25), one will have to compute integrals of the form

1

N, =(N;""(x)) = q

—1

p(%,2)2" NP (%, 2) dz>, n=0,1,2,3,4 x=(x"x); (4.66a)

because of the particular form in eqn (4.18) of €,4(v), v in V},. If the exact expression of (u~')j (see
Section 2) is used in eqn (4.36), then in eqn (4.66) one will have to compute integrals of rational
polynomials X%, _ p,.(z)/p(z) where the degree of p(z) = (p(x,z))” is 6 and that of p,(z) is m.

The exact expression is complex but not necessary since numerical integration can easily be
implemented.

Let €,5(u(0)) = e,5(i1) — zk,5(1) + 2°Q,4(@1), z = x> and €,4(v) = €,4(0) — zk, () + 2°Q0,4(7) and let
us denote €(u(0)) = e—zk+2*Q, €() =é—zk+2*Q, where i =(,&), 7=(,n;) is in
(H,,(S))* x H: (S); then, by using the de-scaling relations

Gxhx?) =8 (xx7); S x7) = el (xx?) forall (x', x7) eS;
1
by =eby ()= (B)f. 2 =ez z=x";

and replacing N, by
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Fig. 4. Stiffened shells.

Ny = (Ne0) = q p(%,2)2" N (%, 2) dz>, n=0,1,2,3,4 %=(x'x), (4.66b)

the two-dimensional variational equation of the real shell deduced from eqn (4.25) now reads:

find(&;, &) e(H,,(S))* x H; (S) such that
J (Nje:e+ Nok:k+ Nye: O+ N5Q: e+ NQ: O — Nie:k— Nik:e— Nik: Q
S

~N0:R)dS = L(5). (4.67)

The exact expression of L, can be deduced easily from L. The variational eqn (4.67) is well
defined and the corresponding boundary-value problem can be deduced as shown below. Finite
element methods can then be implemented to compute the exact two-dimensional displacements
(&, &), the three-dimensional displacements u° = (u¢), the in-plane stresses 6* [see scaled formula
(4.42)] and shear stresses ¢” as indicated.

We recall that if the usual assumptions on thin shells are admitted, except the first two terms of
the left-hand side of eqn (4.67), all the others will disappear and the right-hand side will have to
be modified because of the form of the limit displacement. Because of the Taylor expansion of
p(p~ "), we shall be interested in the best first-order equations which have similarities with
equations widely used in engineering.

5. The best first order two-dimensional problem

The Taylor expansion of (1~ ')} given in Lemma 1 can also be written as

(W s =05+zbi+ Y 2"(b")E, 2z =X

n=2
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Recall that (9*) = (u=")2(p~ ")a™ and p(x, z) = 1 —zb;+ 27 (b1 b3 —b3b7). Using these expressions,
the left-hand side of the two-dimensional scaled variational eqn (4.25) or (4.67) takes the form

A, (a,0)+zbB(a,7) = L(7) = J (PN, +p°n3) dS+J
S

71

(@, +q’n3) dy+J m*0, dy (5.1

71

where 4, and B, are continuous bilinear forms; with

2F
A, (@,7) = ‘ZJ [(1—¥)e* (@) + veli(@)a] e,y (D) ds
—V s
2E J [(1—9) K (@t) + VK" (1) a”"1 K, 4 (D) ds
3(1—v2
2F
_— oaf (= = 0\ 2B C
3(1—v2 J v)e* (1) + veh (@) a™’] Q5 (V) ds
_ B " ap
3(1_ J[(1 V) O™ (@) +v Oy (@) a*’ e, (v) ds
5E
+ - J[(I—T’)Q"”(ﬁ)+?Qﬂ(ﬂ)a”’]Qals(ﬁ)ds (5.2)
5(1—7%) Js

L(o) = J [p*n.+p n:]dHJ

71

[9"n,+q’n3] ds+f m*0, dy; (5.3)

71

S W) dz4+ o w* (D) +hw*(—1); w(z) = 6% —zb*+ 72b*D., (5.4)

Az 4B =0 i) dz+ I wi () + B wi(—1D)]; w2 (2) = (—z0%+ 22bY),
(5.5)

7=l
-1
J e dz J i ds, (5.6)
o]
=,

i dz, (5.7)

zh*dz— J bl dz,m = m*a, = m,a’; (5.8)

01 = _(b;/cn}'+vxn3)> (59)
1 =(E,, &) isin (H)(S)* x H7 (S), 0=(n,n5) isin (H;,(S))* x H; (S). (5.10)
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All terms in bold are new. In the forces they are proportional to y = i/R or y* because of the
particular form of the displacement. It should be observed that the five terms found in A4,(a, 7) are
the first-order terms in the Taylor expansion, of N,, N,, N,. First-order terms related to N, and NV,
disappear because they are skew-symmetric. They will also appear if the material distribution is
not transversally symmetric as may be the case if the thickness is not the same on both sides of the
midsurface (for example, stiffened shells, see Fig. 4).

The best first-order variational equation is defined by

find @ =(5,.¢)  in (H,(5)> x H2,(S). (5.11)

A, (@,0) = L), 0=(1,,n5) in(H,()*xH;(S). (5.12)

Theorem 8. The best first order variational eqns (5.11) and (5.12) have a unique solution #,. Let
@i be the solution of the full two-dimensional variational eqn (4.25) or (5.1), then there exists a
constant C > 0 such that

la—a |l <Cx, x=hR (5.13)
Proof. We shall first show the elipticity of eqn (5.12). Let the symmetric tensor A be defined by
. . 1—7v) .
Ax/;ar — Vamaa/f + ( V) (ac«)a/)’r + ama/}O) , (5 14)
1—72 2

then there exists a constant C such that for every symmetric tensor & = (g,)
Ac:6>Cs:6 (5.15)

Using A we have:

[ . 2( . 4 _ 2( -
A(@a)=2| Ae:edS+ - | Ak:kdS+ < | Ae:QdS+ - | AQ:dS,
JS 3‘,5’ 3 S 5 S
[ 2( - 2 _5 2( .
=2 | Ae:edS+ 5 | Ak:kdS+ -x2 | A5e:QdS+ - | AQ0:QdS.
JS 3.,5 5 S 3 5 S
o[ deeas+ 2 Ardas+ 2 Ao+ e) (04 2e)as—2[ Feleas
= I, ee +3us : +5 ) Q+3e. 0 3¢ 5], ;¢3¢dS,
8 [ - 2( - 2( - 5 5
> | AetedS+ 5 | Ak:kdS+ - | A(Q+ e )| O+ 5e|dS
9 Js 3)s 5] 3 3

> CJ /Ie:edS—i—J Ak:kdS = C(|le]* + | k|1?).
N S

We deduce from Lemma 2 that the coercivity of A,(@, @) and consequently the existence and
uniqueness of .

From eqns (5.1) and (5.12) we deduce by subtraction that for every & =(1,,#;) in
(H.,(5)) x H2,(S)
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A, (@i—u,,0) = —zb?B (i, D).
By letting ¢ = —@,, we deduce from the continuity of B} (i, #) and the elipticity of A4, that
la—a,|* < Clal|a—a|x
since |zb%| < y and eqn (5.13) is proved. *

Let (u#,0) and (u,,0,) be the displacement and the stress in the shell Q computed after the full
two-dimensional shell eqn (4.25) and the best first order two-dimensional eqn (5.12), respectively,
then as a consequent of eqn (5.13) we also have

lu—u, || < Cy, (5.14)
lo—a, || < Cx. (5.15)

These estimations show that it may be sufficient to consider the best first-order two-dimensional
shell equations for certain practical cases. It should be observed that the bilinear form A4, can also
be decomposed as A, = A,+ B, where 4, is the usual bilinear form found in thin shell for the linear
Koiter’s model. Let u, be the solution found in thin shell. Using the same arguments as in Theorem
8 it is also deduced that there exists a constant C such that

Iy —uo |l < Cx, and  [loy —o,| < Cy. (5.16)

It follows immediately that ||u—u,| = 0(x) and ||oc —a,|| = 0(y). These estimations show that
the general model found in this framework eqn (4.25) or (4.67) or the best first-order model, eqn
(5.12), are suitable for thin shells. Moreover, they provide estimations on the errors committed
when the classical model for thin shells is used.

If necessary, instead of the full equation, a best second- or third-order variational equation may
rather be used by considering additional terms in eqn (5.1) and this will lead to [u—u,| = 0(y"),
and ||o—o,| =0(x"), p=2, 3,... These considerations will depend on the type of practical
problems to be solved.

We shall now present the de-scaled two-dimensional boundary value equations by using the de-
scaling relations on the transverse displacement &5, the in-plane displacements &, and the curvature
tensor (b°)%:

Ex',x?) = E,(x",x%); &(x'x?) =e&5(x',x%) forall (x',x?) inS (5.17)
1
biy = by, (0)j= (), 2=z z=x" (5.18)

the shell displacement consequently satisfies the relations:

w,(x%) = e’u,(0)(x);  3(x") = eus (0)(x) = e&5(x", x?).

Let t, v be the unit tangent and outer normal vectors, respectively, on the border y, of S. Let v, t,
a’ form a direct orthonormal basis in IR* and v = (11,, 15) in (H (S))* x H (S). We define

n,= —v-(bing+Vn)a, n, = —t-(bn+V,ns3)a*;
then
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J m*0,dy = J (m'n,+m'n,)dy, m' =m-v, .m' =m-t
7

71

where m’ and m" are flexural and torsional moment density, respectively, on the border y, of S. We
shall denote by mil, m!, p%, p., q%, q. the homologous of n', m", p*, p°, ¢°, ¢’ obtained after de-
scaling by replacing all variables X found in the integrals by their homologous X* and integrating
from —etoe.

Let 7 =(&, &)

N — lziE; [(1— ) (&) + 7e’ (i) a], (5.19)
M = ﬂ [(1 =)k (i) —I—sz(ﬁﬂ)a“ﬁ], (5.20)
3(1—1?)
_ 26’E*
af _ 77 7 _ =\ B (3¢ = 0 (7€) 4B
M:? 31—7) [A—=v)e (@) 4 Vel () a*"], (5.21)
_ 263E®
afp _ 77 77 _ 5 af (= =P (i€ P
N; 30— [A—9)Q* (@) +vQh (@ (a™], (5.22)
it = 2 (=0 70 (5.23)
5(1—v%)

The best first-order two-dimensional de-scaled shell variational equation is:

J (N,:e(@)+M, k(@) +N,:e(®)+M,: Q@)+ M,:0(p))dS

= f [pin., +p3n3]ds+J
S

71

(921, +¢;n3] ds+ f (min, +m;n,) dy;

o =(n,,n5) isin (H}(S))* x H; (S). (5.24)

The first two terms on the left are those found in thin shells. The upperscored membrane stress
tensor N, the upperscored and double upperscored flexural moment stress tensors M and M
(respectively) are new terms which modify the usual in-plane stress and moment. From their
definitions we deduce that:

the membrane stress is N,+ N, while the moment is M, + M, + M,.

In most computer aided design programs steel reinforcements are computed by using N, and
M.. One will have to replace N, by N,+ N, and M, by M.+ M.+ M, (Capra and Maury, 1978).

Let us recall the two-dimensional covariant version of Green’s formula:
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J VXM“/de=J M*v,dy or J V.M*Pp,dS = —J
S oS S

N

MV v, dS+ j My, dy.

S
We shall denote by
b"r’ = brxvaa b:cr = bwtaa M = Mxﬂvoclﬂa 03 = 0“ M = Mo{rvm 00( = _(bl’/ly_‘_va’/h)'

From the variational equation and by using Green’s formula and the above definitions, pro-
ceeding as Bamberger (1975), we derive the following boundary value problem:

on S:

PPV N L2V, M) b+ M* (V. bE) + V,(M*b7)bE 4V, N** +-V (M b7) b = 0, (5.25)

—p* +V, VM —N*b,,—blb,, M* +V,V (M b*) — N* b,y +V,V y(M*b? = 0, (5.26)
on the free border y;:

NP+ M+ (M —m" )b — g + M b bF + N+ M bLb! = 0, (5.27)

Vy My, —d,(m" — M)+ q+V g (M*bE)v, +V s (M*b)v, +0,(M** bt + M bt) = 0, (5.28)

M" +m’ + M b +M°b = 0, (5.29)
on the clamped border 7,:

&=0, 0.6 =0. (5.30)

We have voluntarily omitted the subscripts ¢ on bi; and (b°)}. The real displacements in the shell

is

wy(x', X2, 2°) = & — 2 QDT E+V,E) + (2°)* (D5 b7 & + b V.E5), (5.31)

wi(x', X%, 2%) = &; (5.32)
and the stresses *#(x', X%, z°) are given by

o (x',x2,z%) = 218sz‘ —Z:Mzus(;;)zmﬁ; (5.33)

while the shear stresses ¢ (x', x?,z%), .7 (x', x?, z°) are computed by solving eqns (4.47) and
(4.48) and (4.51) and (4.52) in which the subscript ¢ is added to homologous terms.

The upperscored terms are non classical terms while the others are those found in engineering
literature. From their definitions these new terms are related to the third fundamental from. Their
energy contribution can then be estimated and will thus enable engineers to choose one model or
the other. We recall again that the form of the variational eqn (5.24) is due to the transverse
symmetric distribution of material across the midsurface and so depend on the form of the in-
plane stresses.



5172 R. Nzengwa, B.H. Tagne Simo | International Journal of Solids and Structures 36 (1999) 5141-5176

6. Discussion and comments

We first recall that the geometry of the shell is general. We only imposed the condition that
x < 1 (which implies that p > 0 eqn (2.5)) and the local chart be at least W** (which means that
C' midsurface are considered because of the compact embedding of W** in C'). The usual classical
condition C? is consequently treated. No uniform elipticity condition is imposed on the midsurface.
The two-dimensional model of the real shell eqn (4.67) (which is the main objective of this paper),
obtained from eqn (4.25) through the de-scaling relations and integrations was deduced from
the three-dimensional problem and strong convergence results have been proved. No a priori
assumptions whether of a geometrical or mechanical nature were made. The fact that the modulus
tensor on the midsurface depends on the thickness and the curvature is in fact natural. Clearly two
clamped spherical slabs, one convex, the other concave do not offer the same resistance to the
same transversal loading. The estimations in Section 5 show that this model can be used for thin
shells, membrane or flexural shells as well as thick shells.

It should be recalled that in our approach the small parameter is half the thickness 4. The
parameter ¥ = h/R found in earlier mechanics appears naturally because the full expression of the
contravariant basis vector g* is used. Because of this, the parameter y appears in the strain tensor,
eqn (4.18), in the modulus tensor, eqn (4.66) and consequently in eqn (4.67).

The main difference between our final displacement and that found in the literature is due to the
following reason. In the classical framework used in thin shell, the basis vectors of the unscaled
shell Q° are still assumed to be basis vectors of the scaled shell Q. This hypothesis induces an
approximation on the scaled metric. Moreover the contravariant basis vector g7 is approximated
and in the limit, is equal to §* = (6} +zb})d” in the scaled shell.

It should also be noted that this is exactly the first order approximation of (¢~ ')3a” (see Lemma
1). The limit displacement obtained i, = £,—zV, &5, @13 = &; (which is the classical Kirchhoff-Love
displacement) is expressed in the basis {a”, ¢’} instead of the basis {g”, @’}. It should be noted that
this Kirchhoff-Love displacement satisfies the equations €;(1) = 0, in which the expressions of the
shear strain €;(u) have been approximated. By neglecting certain terms of the scalar product
(I4+Vu)A;-a, (A5 is a normal vector to the midsurface and a, is a tangent basis vector of the
deformed midsurface) one obtains (/4 Vu)A4;-a, ~ 0 and the classical assert: that a Kirchhoff—
Love displacement transforms normals to the midsurface to normals to the deformed midsurface
is thus deduced.

Because of these same approximations it is also said that a Reissner—Mindlin displacement
u, = ¢,—z0,(x', x?), u; = & where &, 0, are five unknown functions is not a Kirchhoff-Love
displacement. In this framework, the exact expressions of €;(u) are used; it appears that both the
classical Kirchhoff-Love and Reissner—Mindlin displacements are linear approximations of the
final Kirchhoff-Love displacement we have obtained. In fact the exact transverse shear strains of
the classical Kirchhoff-Love displacement are ¢,; (1) = b1, ,, # 0. Such a displacement is therefore
inadmissible because it is shear strain free in thick shells (the resultant deformation is not planar).
Moreover Q,,(i1) # 0. By using thin shell model, the following term in the deformation energy

(1/2)J (Nse: Q+N30:e+ NQ: O — Nie: k— Nik:e— Nsk: Q — N50: k) dS

disappears and by applying finite element methods, stiffness matrix obtained in this way will
obviously be ill-conditioned.



R. Nzengwa, B.H. Tagne Simo | International Journal of Solids and Structures 36 (1999) 5141-5176 5173

The Reissner—-Mindlin displacement gives a better result in computational mechanics when a
plate is ‘moderately thick’ probably because it is a better linear approximation of the displacement
of a thick shell.

The new terms that appear in our model and the correction that naturally appears on the
strains may probably ameliorate ‘the locking phenomenon’ encountered in numerical computation,
because their energy contribution will modify stiffness matrix (Chapelle, 1995).

Clearly the limit displacement found in our approach which is a Kirchhoff-Love displacement
(yields planar deformation) does not transform normals to the midsurface to normals to the
deformed midsurface. So also the Navier—Bernoulli displacements on beams or rods are reviewed
in this framework.

It is well known in practice that cross sections of beams with great height do not satisfy the
Navier—Bernoulli displacement principle.

Though the Reissner—Mindlin displacement does not transform normals to the midsurface to
normals to the deformed midsurface, Reissner’s approach is different. It is based on the geometrical
assumption that the three-dimensional displacement is of the form stated, but this assertion is yet
to be mathematically substantiated.

Another theory which provides non classical Kirchhoff—-Love displacement consists of imposing
a formal power series expansion of the three-dimensional solution and to construct the successive
terms (Goldenveizer, 1963, 1964). In this approach some a priori restrictive mechanical assump-
tions are imposed on the stress and strain distribution across the midsurface. Some difficulties arise
on the boundary conditions. Convergence results are still to be improved.

Naghdi’s approach imposes at the beginning of the analysis a geometrical assumption on the
type of displacement that the shell undergoes (displacement with five unknown functions) and a
mechanical assumption on the stress field (planar stress distribution). Such assumptions have not
been deduced from the three-dimensional model.

In Section 5 we emphasized on the best first-order approximation of the full variational eqn
(4.67) because the surface rigidities may be expensive in computation. In some practical cases
because of the error estimate established, only an n-th approximation of these rigidities may be
sufficient. Unlike in the power series expansion method, the n-th approximate solution which in
our approach is the solution of eqn (4.67) with approximate surface rigidities is still of the form
of eqns (4.16) and (4.17) and therefore satisfies boundary conditions.

Our limit displacement can be written as

w,(x', 3, 2) = &,(x', x?) +20,(x", ) + 2P, (x 1, x7), us(x', X7, 2) = &(xL X,

This approach is appropriate to study torsional loading and will probably yield better results if
the seven functions are considered as independent unknowns. Such displacements are shear strain
free. It will be much easier to implement numerically since it will only require finite elements of
class C° (Ciarlet, 1978).

A general displacement for shells of the form u,(x', x%, z) = &(x', x?) +z0,(x", x*) + 22 (x', X?)
yields different results probably more realistic as it preserves the shear strain and transversal
deformation. Details on this approach will be presented in Nzengwa (1998b).

Another important aspect of this model is that it ca be applied to stiffened shells. In reality a
stiffened shell can neither be considered as a thin shell nor a ‘moderately thick shell’ because in
certain cases the stiffeners may be very thick locally and it may be impossible to mesh such a three-
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dimensional structure if finite element method is used for computation (Fig. 4). Our model will
still be applied provided y = #/R < 1. If the midsurface is not stiffened symmetrically then the
shell can be immersed in a symmetric stiffened shell (obtained by reflection over the midsurface
for example) and the rigidities (4.66b) will be integrated in the real shell.

In certain computer programs widely used, the stiffeners are considered as beam elements while
the rest of the shell is assumed to be thin. Particular finite elements are used at the junctions
between the shell (rest of the shell) and the stiffeners (Combescure, 1994). Though numerical
computations have been performed, no mathematical justifications have been provided. Such
complex finite elements are not necessary in our approach. It can be deduced from our displacement
field that no part of a cross section of the shell undergoes beam displacement. In stiffened shells,
even if the best first order two-dimensional model is used, the final shell equation will be non-
homogeneous. In most practical cases the midsurface distribution of the rigidities will be periodic
or even almost periodic and may vary rapidly. Homogenizing rigidities so obtained is of great
practical interest. These aspects have also been analyzed by the authors.

The authors have also analyzed the effect of this model in the elastic dynamic behaviour of thick
shells and the non-linear elastic model for thick plates. This approach will be extended to the
elasto-plastic analysis and the junctions of shells in a rather inherent slightly different approach of
that found in Ciarlet et al. (1989).
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