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Abstract

In this paper\ a two!dimensional model for linear elastic thick shells is deduced from the three!dimensional
problem of a shell thickness 1o\ o× 9[ From di}erent scalings on the tangent and normal components of the
displacement uo as widely used in recent works\ the limit displacement appears to be Kirchho}ÐLove
displacement of a di}erent type[ It contains additional terms to those found in the ReissnerÐMindlin model
and satis_es more general equations containing the classical terms found in the literature and some new
terms related to the third fundamental form[ Such terms could not be well handled in the usual framework[
Shear stresses across the thickness are also computed[ This model appears to be appropriate to handle
sti}ened shells which\ in fact\ cannot be considered uniformly as shallow shells[ As a by!product it also lays
the mathematical background to justify the ReissnerÐMindlin model for plates and will probably contribute
to a better understanding of the locking phenomenon encountered in computational mechanics[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

Nomenclature

a[[ b[[ c[[ _rst\ second and third fundamental form of the surface S
Aijkl

o \ Aijkl contravariant components of the three!dimensional elasticity tensor of the
shell VÞo and VÞ\ respectively

AÞabgd contravariant components of the best!_rst order two!dimensional elasticity
tensor de_ned on the middle surface S

"AB#ij � AijklBkl if A �"Aijkl"x##\ B �"Bij#
bab\ ba

b covariant and mixed components of the curvature tensor b[[

B ] C � BijCij if B �"Bij#\ C �"Cij#
det"a[[#\ det"`[[# determinant of the metric tensors "a[[# and "`[[#
e[[ covariant components of the linearized strain tensor of the middle surface S
f = v � f ivi if f �" f i#\ v �"vi#
" f i

o#\ " f i# contravariant components of the applied body forces in Vo and V\ respectively
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`o
[[\ `[[

o and `[[\ `[[ covariant and contravariant components of the metric tensor of the shell VÞo

and the shell VÞ\ respectively
"`i

o#\ "`i# contravariant components of the applied surface forces on the borders 1Vo

and 1V\ respectively
HÞ\ KÞ mean curvature and Gauss curvature of the shell\ respectively
IR2 Euclidean space
k[[ covariant components of the linearized change of curvature tensor of the

surface S
ms ~exural moment density on the part g0 of the border 1S
ma contravariant components in the tangent plane of applied moment on the part

g0 of the border 1S
mn torsional moment density on the part g0 of the border 1S
Mab

o \ MÞ ab
o \ M

� ab
o contravariant components of the ~exural moments "or bending moments#

stress tensors Mo\ MÞ o and M
�

o\ respectively
Nab

o \ NÞab
o contravariant components of the resultant "or membrane# stress tensors No

and NÞo\ respectively
NÞabgd

n \ n � 9\ 0\ 1\ 2\ 3 contravariant components of the full two!dimensional elasticity tensor
de_ned on the middle surface S

pa\ p2 contravariant components of the two!dimensional applied surface density
loads

qa\ q2 contravariant components of the two!dimensional applied border density
loads

Q[[ covariant components of the linearized change in the third fundamental form
of S\ or change of Gauss curvature tensor of the surface S

Ra principal radii of the surface S
Rijkl RiemannÐChristo}el tensor of the derivation =
RÞabgd RiemannÐChristo}el tensor of the derivation 9
S reference con_guration of the middle surface of the shell
uo �"uo

i #\ u �"ui#\ vo �"vo
i # or v �"vi# three!dimensional displacement _elds and vector _elds

de_ned on VÞo and VÞ\ respectively
u¹ �"u¹i#\ v¹ �"v¹i# two!dimensional displacement and vector _elds de_ned on the middle

surface S
xo �"xx

i # and x �"xi# are generic point in the sets VÞo and VÞ\ respectively[

Greek symbols
Gk

ij\ GÞg
ab Christo}el symbols de_ned on Vo and S\ respectively

da
b\ di

j\ dij\ dij Kronecker|s symbols
e[["uo#\ e[["uo# three!dimensional covariant and contravariant components of the linearized

strain tensor associated to the displacement _eld uo\ respectively
o variable\ de_nes the half!thickness of the shell
s[[

o \ s[[ the three!dimensional contravariant components of the stress linearized tensor
of the shell VÞo and VÞ\ respectively

VÞo\ VÞ closures of the sets Vo and V and are the reference con_gurations of the shell
of thickness 1o and 1\ respectively
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9a covariant derivation on S
98 �"1i8j# gradient of a mapping 8 ] V W IR2 : IR2[

Other symbols
1A border of the subset A in the Euclidean space[
= Euclidean scalar product
] matrix scalar product
× Euclidean vector product
= = = Euclidean norm
= covariant derivation on Vo or V[

0[ Introduction

Models for thin "or shallow# shells have been widely analyzed since the works of John "0854#\
Koiter "0869#\ who laid\ modern foundations\ to recent works due to Ciarlet and Miara "0881#\
Ciarlet and Lods "0883\ 0885#\ Blouza and Le Dret "0884# and other authors "see references# who
have reviewed and justi_ed the linear models including many practical aspects on the loads and
geometry of the midsurface[ The e.ciency of the numerical computation of the models so obtained
depends crucially on the ratio x � h:R\ where h is half the thickness and R the absolute value of
the minimum radius of the midsurface or on some small dimensionless parameter "see e[g[ Brezzi
and Fortin\ 0875#[ Terms proportional to x are not found in these models "see Bamberger\ 0864#[
Such terms will involve the third fundamental form of the midsurface which disappears in the limit
analysis even in recent works[ In thick shells\ energy related to terms proportional to higher orders
"greater or equal to one# of x can be important and such terms may improve not only the numerical
methods\ but also\ provide much more information on the shear stresses usually important in this
case[ Elastic energy stored in these terms may improve elastic behaviour in elasto!plastic analysis
and even mode shapes in dynamic analysis[

In this paper\ a two!dimensional model for linear elastic thick shells is deduced from the three!
dimensional problem of a shell of thickness 1o\ o × 9\ under the hypothesis that the Lame� constants
Lo\ Go of the initial shell vary as o−2[ Di}erent scalings are performed on the tangent and normal
components of the displacement uo as widely used in recent works[ However\ there is a main
di}erence in the scaling procedure[ Let Vo be the domain occupied by the shell and "`o

i #\ "`i\o# its
covariant and contravariant basis\ respectively[ Let V be the homologous scaled domain[ In recent
works "see e[g[ Ciarlet and Miara\ 0881^ Ciarlet and Lods\ 0883\ 0885#\ "`o

i # and "`i\o# are assumed
to constitute the covariant and contravariant basis of V[ So Vo and V have the same metric[ All
vectors and tensors in the _xed domain V\ therefore\ have their components expressed in basis
depending on o[ Consequently metric systems in the scaled domain V are a priori approximated[
In our setting\ the exact covariant and contravariant basis in V are used[ Moreover all tensors and
vectors in the scaled or unscaled con_gurations are expressed in the midsurface basis which is
_xed[ This di}erence is very important and consequently\ the displacement obtained in our limit
analysis is more general[ It contains additional terms to those found in the ReissnerÐMindlin
model and satis_es more general equations containing the classical terms found in the literature
and some new terms related to the third fundamental form as already stated[ Shear stresses along
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the thickness are computed by solving some di}erential equations slightly di}erent from those
found in thin plate theory "Destuynder\ 0879#[ This model appears to be appropriate to handle
sti}ened shells as they cannot be considered uniformly as shallow shells[ It also lays the math!
ematical background to justify ReissnerÐMindlin model for plates and will probably contribute to
a better understanding of the locking phenomenon encountered in computational mechanics[

This paper is organized as follows] in Section 0\ in order to let this paper be self content\ and
for notational purposes\ we present usual preliminaries in shell theory and functional spaces which
shall not be modi_ed in our approach[ Some useful new relations related to this approach will be
demonstrated[ Most demonstrations found in the literature will be brie~y referred to without
further details[ The unscaled and scaled three!dimensional problem will be analyzed in Section 1[
Apart from the di}erence noted above\ the scaling procedure is the same as in Ciarlet et al[ "0878#\
Ciarlet and Miara "0881#\ Ciarlet and Lods "0883\ 0885# and other authors except on the curvature
tensor where we have introduced a crucial hypothesis not widely used[ In Section 2\ convergence
results shall be established and shear stresses computed[ Unlike in plates and thin shell classical
theory\ the limit problem appears to be the equilibrium equations of a shell with a non homogeneous
modulus tensor which depends locally on the thickness and curvature[ Terms appearing in this
tensor are proportional to "xp#\ p − 9[ The _rst!order term of the Taylor expansion of the modulus
tensor also leads to a well de_ned homogeneous shell equation similar to that found in engineering
literature with some additional terms[ A detailed analysis of this _rst!order two!dimensional model
for thick shells is given in Section 3[ Some comments will be made in Section 4[

All vector spaces in IRn\ n − 0 will be Euclidean with an orthonormal basis whose scalar product
will be denoted by = and vector product by ×[ We shall also denote v\a � 1v:1xa � 1av[ All indices
in Greek letters take their values in the set "0\ 1# while Latin indices range in "0\ 1\ 2#[ The repeated
index convention on summation will be adopted unless otherwise speci_ed[ All constants C used
will be independent of the di}erent variables unless otherwise speci_ed[ Further notations will be
given in the text or in the glossary[

1[ Preliminaries

Most of the results\ based on the application of di}erential geometry on a surface can be found
in Do Carmo "0865#\ Spivak "0864#\ Naghdi "0869#\ Green and Zerna "0857#\ Lelong and Ferrand
"0852# and Morgenstern "0848#[

1[0[ Geometry and deformation of a surface

In what follows\ S is a su.ciently regular bounded surface in IR2 de_ned by a chart 8] v¹ W IR1 :
IR2\ such that 8"v¹ # � SÞ\ S has a boundary at least Lipschitz continuous\ v is an open bounded
connected subset of IR1^ SÞ and v¹ denote the closure of S and v\ respectively[ We shall assume that
the mapping 8 is of class C2 though milder conditions could be used in de_ning the surface tensors
"see Blouza and Le Dret\ 0884#[ In fact it su.ces that 8 belongs to the space W1\�"v¹ # which implies
that S is C0 "see Adams\ 0864#[

Let x¹ �"x0\ x1# be the coordinate system in S\ then the covariant and contravariant tangent
basis of S are de_ned by "aa# and "aa# where
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aa � 1a8 and aa = ab � da
b[

Let a2"x¹ # � a0×a1:=a0×a1= � a2"x¹ #\ then a0\ a1\ a2 or a0\ a1\ a2 constitute two dual basis in IR2[ The
covariant and contravariant metric tensors on S\ also called the _rst fundamental form of S\ are
de_ned by

"aab# � "aa = ab# � "ab = aa# � "aba#^ "aab# � "aa = ab# � "ab = aa# � "aba#[

An area element is de_ned by] dSza dx0 dx1^ where a � det "aab#[ The curvature tensor on S
also called the second fundamental form is de_ned by

b � "bab# � "aa\b = a2# � "ab\a = a2# � −"a2\a = ab# � −"a2\b = aa#[

This symmetric tensor is also de_ned by its mixed components] ba
b � aadbdb[

Let R0 and R1 be the eigenvalues of b "also called principal radii# then we shall denote the mean
curvature and Gauss curvature\ respectively\ by "Do Carmo\ 0865^ Naghdi\ 0869#

HÞ �
0
10

0
R0

¦
0
R11�

0
1

tr b �
0
1

ba
a\ KÞ �

0
R0

0
R1

� det"bb
a#[

The third fundamental form scarcely mentioned in the literature and de_ned by

c �"cab# �"bl
ablb# �"balb

l
b# �"cba#

will be of paramount interest in our subsequent analysis[
A surface tensor TÞ will either be expressed by its covariant\ contravariant or mixed components

"TÞa#\ "TÞa#\ "TÞab#\ "TÞab#\ "TÞb
a#[ Recall that

TÞab � aarablTÞrl\ TÞab � aalabrTÞ
lr\ TÞb

a � abrTÞra

Derivation of tangent basis vectors aa or ab and the normal vector a2 � a2 are given by Gauss
and Weingarten formulas\ respectively\ by "Naghdi\ 0869^ Koiter\ 0869^ Do Carmo\ 0865#

aa\b � GÞg
abag¦baba

2^ aa
\b � −GÞa

bga
g¦ba

ba
2^ a2

\a � a2\a � −bg
aag

where the Christo}el symbols GÞg
ab are de_ned by

GÞg
ab � GÞg

ba � aglGÞlab �
0
1
agl"alb\a¦ala\b−aab\l# � ag = aa\b[

Covariant derivations on tensors are given by

9lTÞa � TÞa\l−GÞg
alTg^ 9lTÞ

a � TÞa
\l−GÞa

lgTÞ
g^ 9lTÞ

ab � TÞab
\l ¦GÞa

lgTÞ
gb¦GÞb

lgTÞ
ag^

9lTÞab � TÞab\l−GÞg
alTÞgb−GÞg

blTÞag^ 9lTÞ
a
b � TÞa

b\l¦GÞa
lgTÞ

g
b−GÞg

blTÞ
a
g [

These formulas also lead to 9laab � 9la
ab � 9ld

a
b � 9[ Let v � vlal¦v2a2 � vla

l¦v2a
2 be a

vector _eld on S\ then v\a �"9avl−blav2#al¦"9av2¦bl
avl#a2 �"9av

l−bl
av2#al¦"9av

2¦blav
1#a2

where we denote 9av
2 � v2

\a and 9av2 � v2\a[ The second!order covariant deviations are commutative
on v2^
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9abv2 � 9bav2 � v2\ab−GÞl
abv2\l\

while they satisfy the relations

9bgTÞa−9gbTÞa � RÞl
abgTÞl � RÞlabgTÞ

l^ RÞl
abg � GÞl

ag\b−GÞl
ab\g¦GÞn

agGÞl
vb−GÞn

abGÞl
vg^

and

RÞlabg � alrRÞ
r
abg � bagblb−babblg[

Let u¹ be a displacement of the surface and a�a\ a�2 be the covariant tangent basis vectors and
normal vector\ respectively\ of the deformed surface\ then the strain and change of curvature
tensors are de_ned by

EÞab � 0
1
"a�ab−aab# and kab �"b�ab−bab#[

The linearized part of these tensors "see Bernadou and Ciarlet\ 0865# are given by

eab"u¹# � 0
1
"9au¹b¦9bu¹a−1u¹2bab#^ "1[0#

kab"u¹# � 9ab
n
bu¹v¦bn

a9bu¹v¦bn
b9au¹v¦9a9bu¹2−br

abrbu¹2[ "1[1#

These tensors are widely used in thin shell theory and they express the change in the _rst and
second fundamental forms[ Unlike the _rst two\ the change in the third fundamental form has not
received the same attention[ In the present discussion\ this tensor will be of paramount interest[
Using the same linearization procedure the following results are obtained]

a�a �"dl
a¦9au¹

l−bl
au¹2#al¦"9au¹

2¦bl
au¹l#a2^ a�2 � −"9au¹

2¦bl
au¹l#aa¦a2

and by simple computation

Qab"u¹# � 0
1
"c�ab−cab# � 0

1
ðbn

a9bb
r
v u¹r¦bn

ab
r
v9bu¹r¦bn

bb
r
v9au¹r¦bn

b9vb
r
au¹r¦bn

a9b9vu¹2¦bn
b9a9vu¹2Ł[

"1[2#

In cases of small displacements only\ these linearized parts of the di}erent tensors will be used[
Di}erent formulas obtained in this section will be used in the sequel since a shell will be de_ned

as usual\ using its midsurface[

1[1[ Geometry and deformation of a shell

Let S be a su.ciently smooth bounded surface as described above[ Let m be the generic point
of S with "x0\ x1# as coordinates^ a0\ a1 and a2 the covariant tangent and normal vectors at m[ A
shell V is de_ned by

V � "M in V\ OM � Om¦x2a2^ −h ³ x2 ³ h#[

The surface S is thus the midsurface of the shell V[ The thickness of the shell at each point m is
1h and may depend on "x0\ x1# � x¹ [ We shall further study the family of shells Vo with
−oh ³ x2 ³ oh\ where o is a small parameter[

Let us consider a shell V as de_ned above\ the covariant vectors are de_ned by
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`a � OM\a �"dn
a−x2b

n
a#av\ `2 � a2^

and

`0×`1 �"0−1zHÞ¦z1KÞ#a0×a1 � r"x#a0×a1\ x �"x¹ \ z#\ x2 � z[

It is deduced from the de_nition of HÞ and KÞ that r"x# � 9 if =z= ³ min"=R0=\ =R1=#[ In fact in this
case r"x# × 9[ This is true if half the thickness of the shell h satis_es h ³ min"=R0=\ =R1=# at each
point on the midsurface[ In the sequel we shall assume that the surface S and the shell V are such
that

R �"min"=R0 =\ =R1 =# � 9 m $ SÞ# and h ³ R[ "1[3#

Then there exists a constant r9 such that

r"x# − r9 × 9 "1[4#

and `0\ `1\ `2 automatically constitute the covariant basis of the shell V[ We also deduce from eqn
"1[3# that "ma

b# �"da
b−zba

b# is invertible and `0\ `1\ `2 de_ned by `a �"m−0#a
la

l\ `2 � a2 constitute
the contravariant basis of V[ Though "m−0# can be computed exactly\ for further application\ we
shall provide the following lemma]

Lemma 0[ Let "ma
b# �"da

b−zba
b#\ then

"m−0#a
b � s

�

m�9

zn"bn#a
b\ "b9#a

b � da
b\ b0 � b\ "bn#a

b � bl
b"bn−0#a

l � ba
l"bn−0#l

b[

Proof[ The explicit formula of "m−0# can also be written as

r"m−0#a
b � da

b¦z"ba
b−1HÞda

b#\ r"x# �"0−1zHÞ¦z1KÞ# � det"ma
b#[ "1[5#

Let us suppose there exists Cn such that

"m−0#a
b � s

�

m�9

zn"Cn#a
b\

then

r"m−0#a
b � s

�

m�9

ðzn"Cn#a
b−1HÞzn¦0"Cn#a

b¦zn¦1KÞ"Cn#a
bŁ

�"C9#a
b¦zð"C0#a

b−1HÞ "C9#a
bŁ¦ s

�

m�1

zn ð"Cn#a
b−1HÞ "Cn−0#a

b¦KÞ"Cn−1#a
bŁ[ "1[6#

Comparing eqns "1[5# and "1[6# leads to

"C9#a
b � da

b^ "C0#a
b � ba

b^ "Cn#a
b � 1HÞ "Cn−0#a

b−KÞ"Cn−1#a
b\ for n − 1[ "1[7#

Let

"b9#a
b � da

b\ b0 � b\ and "bn#a
b � bl

b"bn−0#a
l � ba

l"bn−0#l
b[

We shall prove by recurrence that
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"Cn#a
b �"bn#a

b[

Now this relation is already true for n � 9\ n � 0[ Assume it is veri_ed for n−0\ then from eqn
"1[7#\ we have

"Cn#a
b � 1HÞ "bn−0#a

b−K¹ "bn−1#a
b\ for n − 1^

� 1HÞba
l"bn−1#l

b−KÞ"bn−1#l
bd

a
l � ð1HÞba

l−KÞda
lŁ"bn−1#l

b[

Now det"b−uda
b# � u1−1uHÞ¦KÞ^ by applying CayleyÐHamilton|s theorem "Greub\ 0865^ Nering\

0869# we deduce that

b1−1HÞ¦KÞI � 9 and KÞda
l � 1HÞba

l−ba
rb

r
l [

Combining this with eqn "1[4# we obtain

"Cn#a
b � ba

rb
r
l "bn−1#l

b � ba
r"bn−0#r

b � ba
rb

l
b"bn−1#r

l � bl
b"bn−0#a

l\

and the results hold[ E

We now recall all useful relations "Eisenhart\ 0838^ Spivak\ 0864^ Klingenbert\ 0871#[
On the metric\ basis vectors and volume element]

`ij � `ji � `i = `j^ `ij � `ji � `i = `j^ `ab � mn
am

l
bavl^ `ab �"m−0#a

l"m−0#b
ra

lr^

`a2 � `a2 � 9^ `22 � `22 � 0^ `a � `ab`
b\ `a � `ab`b^ `i = `j � di

j\ `ik`kj � di
j^

dV � z` dx0 dx1 dz � rza dx0 dx1 dz � r dS dz^ ` � det"`ij#^ dz � dx2^

On the components of tensors]

Ti � `ijTj\ Ti � `ijT
j^ Tij � `ik`jlT

kl^ Tij � `ik`jlTkl^ Ti
j � `ikTkj^

On the covariant derivations and Christo}el symbols]

Gijk � Gjik � `i\k = `k � 0
1
"`ik\j¦`jk\i−`ij\k#^ Gk

ij � Gk
ji � `klGijl^

`i\ j � Gk
ij`k\ `i

\k � −Gi
kj`

j^ "ul`l#\i � ul
:i`l � ul:i`

l\

ul
:i � ul

\i¦Gl
iku

k and ul:i � ul\i−Gk
liuk^ `ij:k � `ij

:k � di
j:k � 9^

Tij
:k � Tij

\k¦Gi
klT

lj¦Gj
klT

il^ Tij:k � Tij\k−Gl
klTlj−Gl

kjTil^

Tij
j:k � Ti

j\k¦Gi
klT

l
j−Gl

kjT
i
l^ Ti:jk−Ti:kj � Rm

ijkTm � RmijkT
m^

Rm
ijk � Gm

ik\j−Gm
ij\k¦Gp

ikGm
pj−Gp

ijGm
pk^ Rmijk � `mpR

p
ijk[

It should be noted that the formula Ti:jk−Ti:kj is the same in any curvilinear domain not having
necessarily the form of V[

1[2[ Relations between surface and three!dimensional tensors

As we mentioned in the introduction\ one important aspect in our approach will be based on
the di}erent relations presented in this paragraph concerning]
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1[2[0[ Christoffel symbols
We have `a\b � mn

aan\b−zbn
a\ban and `g �"m−0#g

na
n\ then

Gg
ab � `a\b = `g �"m−0#g

n"GÞn
ab−z"9bb

n
a¦GÞl

abb
n
l##

and by introducing the Taylor expansion of "m−0# "Lemma 0#\ we deduce the relation

Gg
ab � GÞg

ab¦"m−0#g
n9bm

n
a[

Similarly

Ga
b2 � −"m−0#a

lb
l
b^ G2

ab � mn
abnb^ G2

2b � Ga
22 � G2

22 � 9^

1[2[1[ Vector quantities
Let T � Ta`

a¦T2`
2 � Ta`a¦T2`2 "`2 � a2 � a2#^ we can also write

T � TÞaa
a¦TÞ2 � TÞaaa¦TÞ2a2\

since a0\ a1\ a2 and a0\ a1\ a2 constitute basis in IR2[ From this we obtain the following relations]

T2 � T2 � TÞ2 � TÞ2^ Ta � mn
aTÞn\ Ta �"m−0#a

nTÞ
n\ TÞa �"m−0#n

aTn\ TÞa � ma
nT

n[ In like manner we
obtain

Ta
b � "m−0#a

nm
l
bTÞ

n
l\ TÞa

b � ma
n "m−0#l

bT
n
l\ Ta

2 �"m−0#a
nTÞ

n
2\ TÞa

2 � ma
nT

n
2\

T2
a � mn

aTÞ
2
n \ TÞ2

a �"m−0#n
aT

2
n \ T2

2 � TÞ2
2[

1[2[2[ Derivations
Ta:b � Ta\b−Gl

abTl−G2
abT2 � mn

a ð9bTÞn−bnbTÞ
2Ł\

Ta
:b � Ta

\b¦Ga
blT

l¦Ga
b2T

2 �"m−0#n
a ð9bTÞ

n−bn
bTÞ

2Ł^

Ta:2 � mn
aTÞn\2\ T2:a � TÞ2\a¦bl

aTÞl^ Ta
:2 �"m−0#a

nTÞ
n
\2\ T2

:a � TÞ2
\a¦balTÞ

l^

T2
:2 � T2:2 � T2\2 � TÞ2

\2 � TÞ2\2[ "1[8#

1[2[3[ Linearized strain tensor
Using eqn "1[8# we obtain]

eab"u# � 0
1
"ua:b¦ub:a# � 0

1
ðmn

a"9bu¹n−bnbu¹2#¦mn
b"9au¹n−bnau¹2#Ł\

ea2"u# � 0
1
"ua:2¦u2:a# � 0

1
ðmn

au¹n\2¦"u¹2\a¦bn
au¹n#Ł\

e22"u# � u2\2 � u¹2\2[ "1[09#

It should be noted here that all quantities expressed with Ð also depend on z � x2[ We have crucially
used the expansion of "m−0# and the relations on Christo}el symbols to obtain eqn "1[09# which
shall be of great importance in Section 2[ In most recent works only truncated parts of these
formulas have been expressed "Ciarlet and Lods\ 0885#[
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1[3[ Functional spaces

Let S and V be su.ciently regular as described above[ We shall denote the border of S by g � 1S
and assume g¹ � g¹9 k g¹0 where g9 and g0 are parts of g with a non!zero measure^ g¹\ g¹9\ and g¹0 denote
their closure[ We shall also denote by G9 a non!zero measure subset of the border of V[ All
covariant derivation on the surface S and the domain V will be denoted by 9a and :j\ respectively[
Derivatives should be understood in the sense of distribution "Adams\ 0864#[ Covariant derivations
on a tensor may be taken on either the covariant\ contravariant or mixed components[ In any case
the results are indi}erently the same[

To begin with\ we recall that the di}erent geometric tensors "aab#\ GÞg
ab\ "ma

b#\ "m−0#n
a\ "bab# together

with their covariant or usual derivatives are uniformly bounded because of the regularity of the
chart[ Consequently the metrics and Christo}el symbols of the shell are also bounded in the same
way[ Next we de_ne the spaces

H0"S# � "h in L1"S#\ 9ah in L1"S##^ IH0"S# � ðH0"S#Ł1^

IH0
g9
"S# � ""ha# in IH0"S#\ ha � 9 on g9#^

H0"V# � "vi in L1"V#\ vi = j in L1"V##^ IH0"V# � ðH0"V#Ł2^

IH0
G9

"V# � "v in IH0"V#\ v � 9 on G9#^

H1"S# � "h in H0"S#\ 9ah in H0"S##^

H1
g9
"S# � "h in H1"S#\ h � 1vh � 9 on g9#^ "1[00#

v is the unit outer normal vector on the border[ The norms on IH0"S#×H1"S# and IH0"V# are
de_ned either by the covariant or usual derivatives by "Bernadou and Ciarlet\ 0865#[

>"ha\ h2#>1 � s
2

i�0

>hi>1L1"S#¦s
a\b

>9ahb>1L1"S#¦s
a

>9ah2>1L1"S#¦s
a\b

>9abh2>1L1"S#^

>v>1
0\V � s

2

i\j�0

>vi>1L1"V#¦>vi:j>1L1"V#[

We recall that if "Tij# is a tensor then the L1!norm is given by "Rougee\ 0858#\

>T>1 � gV
TijTij dV � gV

Ti
jT

j
i dV[

We also recall the following lemma found in Bernadou and Ciarlet "0865#[

Lemma 1[ Let h �"ha\ h2# and e"h#\ k"h# be de_ned through the formulas "1[0# and "1[1#\ then
the semi!norm = [ = de_ned by

="ha\ h2# =1 � 0sa\b

>eab"h#>1L1"S#¦s
a\b

>kab"h#>1L1"S#1 "1[01#

is equivalent to the induced IH0"S#×H1"S#!norm\ in IH0
g9
"S#×H1

g9
"S#[ E
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Lemma 2 "ri`id body displacement#[ Let V be a su.ciently smooth bounded domain in IR2 and
let v be in IH0"V#\ then the following two propositions are equivalent]

"i# v"x# � A¦B×OM\ x in VÞ\ A and B constant vectors in IR2^
"ii# eij"v# � 0

1
"ui:j¦uj:i# � 9[

Proof[ We _rst recall that `i×`j � oijk`
k and `i×`j � oijk`k where oijk � 0:z`eijk\ oijk � z`eijk\

` � det "`ij#^ eijk and eijk are the permutation symbols[
Now if v"x# � A¦B×OM\ then v\i � B×OM\i � B×`i[ Let B � Bm`m\ then v\i � vj:i `

j �
Bm`m×`i � Bmomij `

j[
Therefore vj:i � Bmomij and "vi:j¦vj:i#:1 � Bm"omij¦omji#:1 � eij"v# � 9[
So "i#c"ii# is thus proved[ Suppose eij"v# � 9[ We shall _rst show that the vector B � Bm`m\

where Bm � omijVij"v#:1\ and Vij"v# �"vi:j−vj:i#:1 is constant if eij"v# � 9[ Since omij
:k � 9 we deduce

that B\k � Bm
:k`m � 0:1omijVij:k`m[

But by computation Vij:k"v#−eik:j"v#¦ejk:i"v# � Rm
ijkvm � `i ="v\kj−v\jk#[This is the curvilinear ver!

sion of the well!known formula in Cartesian coordinate system "Germain and Mu�ller\ 0879#[ If v
in IH0"V#\ then in the sense of distribution v\kj−v\jk � 9 "Lions and Magenes\ 0857#[ We therefore
deduce that

Vij:k"v# � eik:j"v#−ejk:i"v# � 9

and the vector B is constant[ Let B be de_ned as above\ then

"B×OM#\k � B×`k � 0:1omjiVij"v#`m×`k � 0:1omjiomklVij"v#`0 � Vlk"v#`0 � vl:k`
0\

since elk"v# � 9[ So "v−B×OM#\k � 9 and this implies that there exists a constant vector A such
that v"x# � A¦B×OM\ so "ii#c"i# is veri_ed and the proof is completed[ E

Lemma 3 "Korn|s inequality#[ The semi!norm =v= de_ned on IH0
G9

"V# by

=v=1 � >e"v#>1L1
s "V# � gV

eij"v#eij"v# dV "1[02#

is equivalent to the IH0!normal >v>0\V[

Proof[ If =v= � 9\ then from Lemma 2\ v"x# � A¦B×OM[ If v � 9 on G9 then it is easy to check
that v � 9[ So = [ = de_nes a semi!norm in IH0

G9
"V#[ Clearly there exists a constant C such that

=v= ¾ C>v>0\V[

We shall show that there exists a constant C such that

>v>0\V ³ C=v=[

Assume that this last inequality is false[ Then these exists a sequence vn such that

>vn>0\V � 0 and =vn = ¾ 0:n\ n $ IN[

We can extract a subsequence still denoted vn for simplicity such that vn :w v ":w denotes weak
convergence#[ We deduce from the semi!continuity of > [ >0\V and = [ = that

>v>0\V � 0 and =v= � 9[
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This is contradictory\ since from Lemma 2\ =v= � 9 implies that v � 9 and the lemma is proved[E

This type of argument is frequent in recent works[ We shall frequently use Lax Milgram|s
theorem in establishing existence and uniqueness of coercitive linear variational equations\ i[e[\
variational problems of the form a"u\ v# � L"v# in which a"[ \ [# is a continuous bilinear and
coercitive form while L" [ # is a linear continuous form[ Detail information on distributions\
functional spaces and their applications used here can be found in Brezis "0872#\ Schwartz "0855#\
Adams "0864# and others "see references#[ Very many versions of Korn|s inequality on a surface
now exist in recent works[ Some of the constants depend on the thickness small parameter o−0[ It
should be remarked that no such estimations occur here[ Korn|s inequality in V can also be proved
but in a much more laborious way by using the Cartesian version[

2[ The three!dimensional problem

2[0[ The unscaled problem posed over Vo

In our subsequent analysis\ we consider a shell as de_ned in Section 0 "Fig[ 0#[ For simplicity
we assume h � 0m and let

Vo � S×Ł−o\ oð\ 1VÞo � GÞo
9 k GÞo

− k GÞo
¦ k g¹0×ð−o\ oŁ^

Go
9 � g9×Ł−o\ oð\ Go

0 � g0×Ł−o\ oðk GÞo
− k GÞo

¦^ GÞo
− � SÞ×"−o#^ GÞo

¦ � SÞ×"o#

be a su.ciently smooth bounded open subset of IR2\ as described in Section 0\ with o being a small
parameter[ We recall that o is dimensionless because we have chosen h � 0m[ We shall use

Fig[ 0[ The three!dimensional clamped shell[ The set VÞo � S×ð−o\ ¦oŁ is the reference con_guration of a shell\ with
thickness 1o and midsurface S\ clamped on the portion Go

9 � g9×ð−o\ ¦oŁ of its lateral surface g×ð−o\ ¦oŁ\ "g � 1S is
the border of S#[ Body forces "f o

i # are applied in the shell|s interior Vo � S×Ł−o\ ¦oð[ Surface forces "`o
i # are applied

on Go
0 � g0×ð−o\ ¦oŁ k Go k Go

¦[ Go
− � S×"−o# and Go

¦ � S×"¦o# are\ respectively\ the lower and upper faces
while g0×Ł−o\ ¦oð is the free part of the lateral surface[
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the tractionÐdisplacement problem as our model!problem[ The three!dimensional equilibrium
equations of an elastic isotropic homogeneous shell which occupies a domain Vo are]

−div so � f o in Vo\ uo � 9 on Go
9\ sono � `o\ on GÞo

0^

`o � h¹ o
− on GÞo

−^ `o � h¹ o
¦ on GÞo

¦^ `o � h¹ o on g¹0×ð−o\ oŁ\

eij"uo# � "uo
ilj¦uo

jli#:1\

Aijkl
o "xo# � Lo`ij

o `
kl
o ¦G o"`ik

o `jl
o ¦`il

o `
jk
o #^ Lo\ G o × 9\

sij"xo# � Aijkl
o "xo#ekl"uo#\ so �"sij"xo##[ "2[0#

In these equations\ f o and `o are\ respectively\ the volume force and surface force\ no the unit
outer normal vector\ Lo\ Go the Lame� moduli\ "eij# the linearized deformation tensor\ `ij

o the metric
tensor on Vo and Aijkl

o "xo# is the modulus tensor[
Let IH0

Go
9
� IH0

Go
9
"Vo# be de_ned as in eqn "1[00# on Vo\ the equilibrium eqn "2[0# is also equivalent

to the variational equation]

uo in IH0
Go

9

gVo

so"uo#] e"v# dVo � gVo

f o = v dVo¦gGo
0

`o = v ds � Lo"v#\ [v in IH0
Go

9
"2[1#

where

A ] B � AijBij � AijB
ij � Ai

jB
j
0^ f = v � f ivi � fiv

i[

Theorem 0[ We assume f o
i is in L1"Vo#\ `o

i in L1"Go
0#\ then the variational eqn "2[1# has a unique

solution[

Proof[ The modulus tensor de_ned in eqn "2[0# is symmetric positive de_nite and there exists a
constant C"o# such that

Lo"uo# � gVo

so"uo#] e"uo# dVo � a"o#"uo\ uo# − C"o# gVo

e"uo#] e"uo# dVo � C"o# =uo =1\

where Lo is a continuous linear from and a"o#"[ \ [# is a continuous bilinear form[ We deduce from
Korn|s inequality "Lemma 3# that the bilinear form is coercitive[ The result is a classical application
of Lax Milgram|s theorem[ E

2[1[ The scaled problem posed over V

We consider the mapping "Fig[ 1#

fo] x in VÞ � SÞ×ð−0\ 0Ł : xo �"x0\ x1\ ox2# in VÞo � SÞ×ð−o\ ¦oŁ

where x and xo are coordinate systems in the closed sets VÞ and VÞo respectively[ If vo is a vector _eld
de_ned in VÞo\ then vo ) fo de_nes a vector _eld in VÞ[ All variables Xo or Xo are related to VÞo\ while
X or X"o# are related to VÞ[ We recall that all Greek indices range in "0\ 1# while Latin indices range
in "0\ 1\ 2#[
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Fig[ 1[ The three!dimensional unscaled and scaled clamped shell[ Each point xo �"x0\ x1\ xo
2# of the reference con!

_guration VÞo � SÞ×ð−o\ ¦oŁ is the image fo"x# of the point x �"x0\ x1\ o−0xo
2# of the set VÞ � SÞ×ð−0\ ¦0Ł[ The set VÞ

is independent of o[ V2 � S×Ł−o\ ¦oð\ Go
9 � g9×ð−o\ ¦oŁ^ V � S×Ł−0\ ¦0ð\ G9 � g9×ð−0\ ¦0Ł\ Go

¦ � S×"¦o#\
Go

− � S×"−o#^ G¦ � S×"¦0#\ G− � S×"−0#\ Go
− � g0×ð−o\ ¦oŁ k Go

− k Go
¦^ g � 1S^ G− � g0×ð−0\

¦0Ł k G− k G¦[ G− is the lower face of the scaled shell\ G¦ is the upper face of the scaled shell[ g0×ð−0\ ¦0Ł is the
part of its lateral surface[

We de_ne the scaling as follows]

on the displacement

uo
a"xo# � o1ua"o#"x#\ uo

2"x2# � ou2"o#"x#\ for all xo � fox $ VÞo^ "2[2#

on the forces
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f o
a"xo# � o−0fa"x#\ f o

2"xo# � f2"x#\ for all xo � fox $ Vo\

`o
a"xo# � `a"x#\ `o

2"xo# � e`2"x#\ for all xo � fox $ Go
0^ "2[3#

on the geometry of the surface "on curvature tensor#

bo
ab � obab\ boa

b �
0
o
ba

b^ "2[4#

on the Lame� constants

Lo � o−2L\ G o � o−2G^ "2[5#

or on the Young|s modulus and Poisson|s coe.cient

E o � o−2E\ v¹o � v¹[ "2[6#

As a consequence of the above scalings we obtain the following relations]

"mo#a
b � "da

b−zoboa
b # �"da

b−zba
b# � ma

b^ "m−0
o #a

b �"da
b−zba

b#−0 �"m−0#a
b^

`ab
o "xo# � `ab"x#\ `a2

o "xo# � `a2"x# � 9\ `22
o "xo# � `22"x# � 0^

eab"uo"xo# � 0
1
ð"mo#n

a"9bu¹
o
n−bo

nbu¹
o
2#¦"mo#n

a"9au¹
o
n−bo

nau¹
o
2#Ł\

� o1 0
1
ðmn

a"9bu¹n−bnbu¹2#¦mn
b"9au¹n−bnau¹2#Ł � o1eab"u"o#"x##\

ea2"uo"xo## � 0
1
"uo

a:2¦uo
2:a# � o

0
1
ðmn

au¹n\2¦"u¹2\a¦bn
au¹n#Ł � oea2"u"o#"x##\

e22"uo"xo## � u2\2 � u¹2\2 � e22"u"o#"x##^ dVo � or"x# dS dz � o dV[ "2[7#

We also denote by GÞ9\ G¹ 0 � GÞ− k GÞ¦ k g¹0×ð−0\ 0Ł the corresponding subsets of the scaled
border 1VÞ[ As a consequence of eqns "2[4# and "2[5# the modulus tensor now satis_es

Aijkl
o "xo# � o−2Aijkl"x#\

where Aijkl"x# is nothing but Aijkl
0 "x# with Lo and Go replaced by L and G[ It is also symmetric

positive de_nite and elliptic i[e[ there exists a constant C × 9 such that

Aijkl"x#eijekl × Ceijeij[ "2[8#

The hypothesis "2[4# also implies that on the scaled domain V\ the covariant and contravariant
basis vector are `i and `i unlike the case in Ciarlet and Miara "0881# where they were replaced by
`i\o and `i\o[ In their analysis only a truncated part of the Taylor expansion of `i\o appeared in the
limit analysis[ The Shallow shell equations are thus justi_ed[ The scalings found in eqns "2[2# and
"2[3# and "2[5# and "2[6# have been widely used and justi_ed at length by Ciarlet et al[ "0878#\
Ciarlet "0889# and others "see references#[ In fact they appear to be the appropriate scalings which
naturally lead to the justi_cation of Kirchho}ÐLove models in linear and non!linear elasticity for
thin shells and plates[ Unlike the others\ the scaling found in eqn "2[4# has not been widely used[
Naghdi "0869#\ Green and Zerna "0857#\ Destuynder "0875# used this type of scaling but in a
di}erent framework[ In fact this scaling is unusual but appears to be the best way to consider the
fact that in a thick shell\ the scaled domain is locally a three!dimensional body with lesser or no
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Fig[ 2[ Cross section of locally unscaled and scaled slab[ N[B[ A locally thick slab with "at least# C0 midsurface S made
of two parts] one convex and the other concave becomes almost parallelipipedic when scaled[

curvature[ To demonstrate\ consider an initial domain Vo whose midsurface So has the diagonal
curvature tensor "ba

b#^ b0
0 � 0:r � b1

1[ Then this same surface in the scaled domain has the diagonal
curvature tensor "Ba

b#^ B0
0 � 0:R � B1

1[ The scaling implies that R � r:o\ that is\ the curvature
becomes small when the domain is scaled[ For example\ locally\ a thick spherical slab with a C0

midsurface made of two parts] one convex and the other concave^ when scaled\ is almost par!
allelipedic "Fig[ 2#[

Using the scalings de_ned above the scale problem is now equivalent to _nd u"o# in IH0
G9

^

gV
ðLet

t"u"o##eb
b"v#¦1Geab"u"o##eab"v#Ł dV

0

o1 gV
ðLet

t"u"o##e2
2"v#¦Le2

2"u"o##eb
b"v#¦3Gea2"u"o##ea2"v#Ł dV

0

o3 gV
ð"L¦1G#e22"u"o##e22"v#¦Ł dV � gV

f ivi dV¦gG0

`ivi ds � L"v#\ veIH0
G9

[ "2[09#
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Theorem 1[ The variational equation "2[09# has a unique solution in IH0
G9

[

Proof[ From the scalings\ fi is in L1"V#\ `i in L1"G0# U H−0:1"G0# and there exist constants C and
o9 such that for o ³ o9

L"u"o## � a"o#"u"o#\ u"o## − C gV
e"u"o##] e"u"o## dV � C=u"o# =1^

again using Korn|s inequality "Lemma 3# and by applying Lax Milgram|s theorem\ we deduce the
existence and uniqueness of u"o#[ E

The solution u"o# of the variational problem satis_es formally the equations]

sij
:j "o#¦f i � 9 in V\ "2[00#

ui"o# � 9 on G9\ "2[01#

s"o#n � ` on G0\

Kab"o# � eab"u"o##\ Ka
b"o# � ea

b"u"o##\ "2[02#

Ka2"o# � o−0ea2"u"o##\ Ka
2"o# � o−0ea

2"u"o##\

K2
2"o# � e−1o2

2"u"o## � K22"o# � K22"o#\ "2[03#

sab � LKp
p"o#`ab¦1Geab"u"o##\ "2[04#

sa2"o# � o−01GKa2"u"o##\ "2[05#

s22"o# � o−1 ðLKp
p"o#¦1GK2

2"o#Ł^ "2[06#

and the scaled stresses are related to the real stresses through the relations

sab
o "xo# �

0
o
sab"o#"x#\

sa2
o "xo# � sa2"o#"x#\

s22
o "xo# � os22"o#"x#[ "2[07#

We shall denote by K"o#"v#\ formula "2[03# applied to any arbitrary vector _eld v in IH0
G9

[

Remark[ The relation "2[01# should be understood in the sense of trace "Adams\ 0864# while the
relation "2[02# should be understood in the sense of the trace operator de_ned by] Y] H"div\ V# :
IH−0:1"G0#\ where H"div\ V# � ""Tij#^ Tij is in L1"V# and div T in L1"V## "Ciarlet et al[\ 0878^
Ciarlet\ 0889#[

3[ The two!dimensional problem

We shall now deduce the limit two!dimensional equation of the sequence of variational eqn
"2[09#[ To begin with\ we _rst characterize the limit displacement[
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Lemma 4[ Let v be in Vkl � "v in IH0"V#\ ei2"v# � 9 in V^ v � 9 on G9#\ then there exist
v¹ �"ha\ h2# in "H0

g9"S##1×H1
g9
"S# such that

va"x0\ x1\ z# � ðmn
thn"x0\ x1#−z1th2"x0\ x1#Łmt

a\ mn
a � dn

a−zbn
a\ z � x2\

v2"x0\ x1\ z# � h2"x0\ x1#[ "3[0#

Proof[ Let oi2"v# � 9[ Let v¹ �"v¹a\ v¹2# be the components of v � va`
a¦v2a

2 in the basis a0\ a1\ a2[
Then va � mn

an¹n\ v2 � v¹2 "see Section 1[2# and it follows that

e22"v# � v2\2 � v¹2\2 � 9 "3[1#

ea2"v# � 0
1
ðmg

av¹g\2¦v¹2\a¦bg
av¹gŁ � 9[ "3[2#

We deduce from eqn "3[1# that v2 does not depend on z � x2^ v2 � 9 on G9 implies that v2 � v¹2 is in
H0"S# and v¹2 � 9 on g9[ Multiplying ea2"v# by "m−0#a

l we obtain the equation

v¹l\2¦"m−0#a
lb

g
av¹g �"m−0#a

lv¹2\a[ "3[3#

From the identity

"m−0#g
b\2 �"m−0#l

b"m−0#a
lb

g
a\ "3[4#

and multiplying eqn "3[3# by "m−0#l
b we obtain the equivalent equation] _nd v¹l in H0"V#

""m−0#l
bv¹l#\2 � −"m−0#l

b"m−0#a
lv¹2\a[ "3[5#

The eqns "3[2#\ "3[3# and "3[5# are all equivalent[ It is easy to check that

v¹g � mb
ghb−zv¹2\g "3[6#

where hb is in H0"S# is the solution[ From eqn "3[6# and va � mb
av¹b we deduce that

z1av2 � mb
ahb−v¹a is in H0"V# and 1av2 in H0"S#[

Therefore v2 is in H1"S# and v2 � 9 on g9[ From va � 9 on g9 we deduce that v¹g � 9 on g9 and
hb � v2\b � 9 on g9[ We conclude therefore that "ha\ h2#e"H0

g9
"S##1×H1

g9
"S#[ By simple computation

we obtain eqn "3[0# which gives

va � mg
av¹g � mg

a ðmb
ghb−zv¹2\gŁ and v2 � v¹2 � h¹2[ E

Remark[ It should be noted that Vkl is a closed subspace of IH0
G9

[ We also recall that all
derivations used here should be understood in the sense of distribution and va � 9 on G9 as trace
as was mentioned earlier[ We are now able to characterize the limit displacement of the sequence
of displacements u"o#[

Theorem 2[ As o : 9 the sequence "u"o##\ o × 9 weakly converges in IH0
G9

"V# to a displacement
u"9# in Vkl and the sequence "Kij"o## de_ned in eqn "2[03# converges weakly in L1"V# to K[

Proof[ The proof is the same as in Ciarlet et al[ "0878# and Ciarlet "0889#[ Using eqn "2[03#\ the
scaled variational eqn "2[09# reads

gV
AK"o#] K"o#"v# dV � L"v#\ "3[7#
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and letting v � u"o# we deduce from eqn "2[8# that there exists a constant C "independent on o#
such that

1G>e"u"o##>1 ¾ >K"o#>1 ¾ C>u"o#>0\V^ "3[09#

the norms were de_ned in Section 1[ We deduce by applying Korn|s inequality that there exists a
constant C such that

>u"o#> ¾ C\ >e"u"o##> ¾ C\ >K"o#> ¾ C^ "3[00#

consequently\

>ea2"o#> ¾ Co\ >e22"o#> ¾ Co1^ "3[01#

and

u"o#:
w

u"9# in IH0
G9

"V#\ "3[02#

K"o#:
w

K in L1
S "V#[ "3[03#

From the semi!continuity of the norms we obtain\

u"9# e Vkl[ "3[04#

E

We deduce from Theorem 2 that there exist "ja\ j2# in "H0
g9
"S##1×H1

g9
"S# such that

ua"9#"x0\ x1\ z# � ðmn
tjn"x0\ x1#−z1tj2"x0\ x1#Łmt

a\

� ja−z"1tj2¦1bt
ajt#¦z1"bn

tb
t
ajt¦bt

a1tj2#^ "3[05#

u2"9#"x0\ x1\ z# � j2"x0\ x1#[ "3[06#

The limit displacement contains the classical Kirchho}ÐLove displacement ja−z1aj2 or that
found in the ReissnerÐMindlin model\ ja¦zca "here ca � −"1aj2¦1bt

ajt##[ The third term which
is partly proportional to x � h:R and x1 is implicitly assumed to be small in thin shells as a
consequence of the hypotheses used in the framework[

Let u¹ �"ja\ j2# be the components of u"9# in the basis a0\ a1\ a2\ then

eab"u"9## � eab"u¹#−zkab"u¹#¦z1Qab"u¹#\ z � x2^ "3[07#

where eab"u¹#\ kab"u¹#\ Qab"u¹# de_ned in Section 1 are\ respectively\ the membrane deformation tensor\
the change of curvature tensor and the change in the third fundamental form as was previously
announced[ This last term usually disappears in the classical framework[

In order to characterize the limit variational equation\ we _rst recall a lemma due to Ciarlet
"0889# which considerably simpli_es the proof as compared to that given in Ciarlet et al[ "0878#[

Lemma 5[ Let w e L1"V# be such that

ÐV wv\2 dx � 9 for all v in C�"VÞ#\ v � 9 on gxð−0\ 0Ł\g � 1S\
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where x is the coordinate system\ then w � 9[ E

Theorem 3[ As o : 9 the components of the weak limit symmetric tensor K satisfy]

Kab � eab"u"9##\ "3[08#

Kt2 � Kt2 � 9\ "3[19#

K22 � K22 � K2
2 � −

L
L¦1G

ea
a"u"9##[ "3[10#

Proof[ We obviously obtain eqn "3[08# since u"o#:w u"9# in IH0
G9

"V#[ Let v �"v0\ v1\ v2# be such
that v o C�"VÞ#\ v � 9 on g x ð−0\ 0Ł and v2 � 9[ Multiplying eqn "2[00# by ov and integrating\ we
obtain\ from Green|s formula

1GgV
Ka2"o#va:2 dV � oL"v#−o gV

LKp
p"o#ea

a"v#¦1LKab"o#eab"v# dV\

:w 1G gV
ðKa2"m#n

aŁv¹\2rza dx � 9 "3[11#

because of the uniform boundedness of L"v# and the weak convergence of K"o#\ for each _xed v[
We deduce from Lemma 5 that

Ka2"m#n
arza � 9 "3[12#

and multiplying by "m−0#t
n:rza implies that Kt2 � 9 and from Section 1 we also deduce that

Kt2 � 9[ Similarly by letting v �"9\ 9\ v2# and multiplying both sides by o1\ passing to the limit\
since Ka2"o# : 9\ we obtain

gV
ðLKa

a¦"L¦1G#K2
2Łv2\2 dV � 9 or K2

2 � −
L

L¦1G
Ka

a "3[13#

and eqn "3[10# is thus proved since Ka
a � ea

a"u"9##[ E

Theorem 4[ Let the limit displacement u"9# be de_ned through u¹ �"ja\ j2# in
"H0

g9
"S##1×H1

g9
"S#[

"i# As o : 9 the sequence of variational problem "2[09# converges to a well de_ned variational
problem on u¹ �"ja\ j2#]

gS $g
0

−0

1GL
L¦1G

`ag`bdeag"u"9##ebd"v#¦1G`ad`bgeab"u"9##edg"v#%r dz dS−LÞ"v¹# � 9\ "3[14#

for v �"v0\ v1\ v2# de_ned by v¹ �"ha\ h2# in "H0
g9
"S##1×H1

g9
"S##^

"ii# The whole family "u"o## converges weakly to u"9#[

Proof[ Let v e Vkl be used in eqn "2[09#[ We obtain
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gV
L"Kt

t"o#¦K2
2"o##ea

a"v#¦1GKab"o#eab"v# dV � L"v#^ "3[15#

passing to the limit and using Theorem 3\ we obtain

gV
L00−

L
L¦1G1et

t"u"9##ea
a"v#¦1Geab"u"9##eab"v# dV � L"v#[ "3[16#

We next apply formulae found in Section 1[1 on et
t and eab to obtain eqn "3[14#[

Now the left!hand side of eqn "2[14# can be written as

gV
Ne"u"9##] e"v# dV � L"v#\ "3[17#

where

Nijkl"x# � LÞ`ij`kl¦G"`ik`jl¦`il`jk#\ LÞ �
1GL

L¦1G
\ G × 9 "3[18#

and consequently there exists a constant C × 9 such that for all "eij#\ ei2 � 9\

C gV
eabeab dV ¾ gV

Ne ] e dV[ "3[29#

We shall now show that the left!hand side of eqn "3[14# which is a continuous bilinear form in
"H0

g9
"S##1×H1

g9
"S# is elliptic[ Let u e Vkl\ we deduce from eqn "3[29# that

C gV
eab"u#eab"u#r dS dz ¾ gV

Ne"u#] e"u# dV "3[20#

and from eqn "3[07# that there exists a constant C × 9 such that

C gSg
0

−0

eab"u#eab"u# dz dS ¾ C gS 01e] e¦
3
2

e] Q¦
1
2

k] ¦
1
4

Q] Q1 dS ¾ gV
Ne"u#] e"u# dV

"3[21#

since there exists a constant r9 × 9 such that r − r9 "Section 1#[ We also have

b
3
2

e] Qb� b
1z1

z2
e]

1

z2z1
Qb¾

3
2

e] e ¦
0
2

Q] Q "3[22#

by applying Ho�lder|s inequality =ab= ¾"a1¦b1#:1[ We therefore obtain the inequality

1
2

C gS

"e ] e¦k ] k# dS ¾ C gS 0
1
2

e ] e¦
1
2

k ] k¦
0
04

Q ] Q1 dS ¾ gV
Ne"u# ] e"u# dV[ "3[23#

In conclusion we _nd that there exists a constant C × 9 such that
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C gS

"e"u¹# ] e"u¹#¦k"u¹# ] k"u¹## dS ¾ gV
Ne"u"9## ] e"u"9## dV "3[24#

and the coercitivity is established by applying Lemma 1[
The right!hand side of eqn "3[14# is obviously a continuous linear form on v¹ �"ha\ h2#[ From the

elipticity established above\ we deduce from Lax Milgram that the limit variational eqn "3[14# has
a unique solution in "H0

g9
"S##1×H1

g9
"S#[

The uniqueness of the weak limit also implies that the whole family "u"o## converges to the
unique limit[ E

Remark[ We can also rewrite rNijkl"x# found in the left!hand side of eqn "3[14# by using the
expression of "`ab# �"m−0#a

g "m−0#b
t a

gt[ If the exact expression of "m−0#a
t is computed and used in

these formulas and if it is assumed that r 3 0 and "m−0#a
t � da

t \ these formulas will automatically
lead to the modulus tensor found in the theory of thin shells[ If Q is also neglected then eqn "3[14#
will yield the usual variational equation found in thin shells[ If di}erent test functions such as

va � ja−z1aj2\ v2 � j2^ or va � ja−z"1aj2¦1bt
ajt#\ v2 � j2^ "3[25#

or if the crucial hypotheses "2[4# is modi_ed\ for example by\ "bo
ab# � ot"bab#\ "bo#a

b � o−t"b#a
b^

di}erent limit models will be obtained[ These investigations will provoke unnecessarily lengthiness
in this paper[ These topics will be widely treated in Nzengwa "0887b#[

Theorem 5[ As o : 9 the whole family "u"o##o×9 converges strongly in IH0
G9

"V# and the whole
family "K"o##o×9 converges strongly in L1

S "V#[

Proof[ The proof is the same as in Ciarlet et al[ "0878# or Ciarlet "0889#[ We _rst observe that
the limit displacement u"9# and the tensor K satisfy the equations]

gV
AK ] K dV � L"u"9## and gV

AK"o# ] K"o# dV � L"u"o##[ "3[26#

From eqn "2[09# or equivalently eqns "3[8# and "3[26# we obtain

1G>K−K"o#>1 ¾ gV
A"K"o#−K# ]"K"o#−K# dV

� gV
AK ]"K−1K"o## dV¦gV

AK"o# ] K"o# dV

� gV
AK ]"K−1K"o## dV¦L"u"o##[ "3[27#

From the weak convergence of K"o# to K and u"o# to u"9#\ we deduce from eqn "3[26# that

>K−K"o#> :
o

9[ "3[28#

By using the de_nition of Kab\ eqn "3[28# also implies that >eab"u"9##−eab"u"o##> :
o

9 and the strong
convergence of u"o# is deduced by applying Korn|s inequality since >ei2"u"9##−ei2"u"o##> also
converges to 9[ E
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We shall denote by H−0"S# and H−1"S# the dual space of H0
9"S# and H1

9"S#\ respectively[ We
shall further consider the spaces H0"−0\ 0^ H−0"S## and H1"−0\ 0^ H−1"S##[

We recall that dV � r dS dz[ The usual compact injections "denoted :i # also hold because of
the boundedness of r]

L1"V# :
i

L1"−0\ 0^ L1"S## :
i

L1"−0\ 0^ H−0"S## :
i

L1"−0\ 0^ H−1"S##[ "3[39#

We shall also use Gronwall|s lemma] "Cartan\ 0866^ Brezis\ 0862\ 0872^ Crouzeix and Mignot\
0872#[

Lemma 5[ Let there be given a function X in L0"ða\ bŁ^ IR¦# such that dX:dt be in L0"ða\ bŁ^ IR#
and

d
dt

X"t# ¾ CX"t#¦C\ "3[30#

then

X"t# ¾ C exp"Ct# "3[31#

and X is consequently bounded in ða\ bŁ[ E

Details on the above spaces and the lemma can be found in Brezis "0862#[ We can now compute
the shear stresses sa2\ s22[

Theorem 6[ Let f a be in L1"V#\ f 2 in H0"V#\ `i in L1"G0#\ then as o : 9 the scaled stresses sab"o#\
sa2"o#\ s22"o# de_ned by eqns "2[04#Ð"2[06# converge strongly as follow]

sab"o# : sab � LÞet
t"u"9##`ab¦1Geab"u"9## in L1"V#^ "3[32#

sa2"o# : sa2 in H0"−0\ 0^ H−0"S##^ "3[33#

s22"o# : s22 in H1"−0\ 0^ H−1"S##^ "3[34#

sa2\ s22 are solutions to the equations

sa2 $ H0"−0\ 0^ H−0"S##^ "3[35#

dsa2

dz
¦1Ga

b2s
b2¦Gb

b2s
a2 � −"sab

\b ¦Ga
bts

tb¦Gb
bts

at#−f a^ "3[36#

sa2"−0# � −h¹a
−^ "3[37#

sa2"0# � h¹a
¦^ "3[38#

s22 $ H1"−0\ 0^ H−1"S##^ "3[49#

ds22

dz
¦Ga

a2s
22 � −"s2a

\a ¦G2
ats

ta¦Gb
bts

2t#−f 2^ "3[40#

s22"−0# � −h¹2
−^ "3[41#

s22"0# � h¹2
¦[ "3[42#
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Proof[ From the de_nition of sab"o# eqn "2[04#\ the convergence of K2
2"o# "Theorem 3# and the

strong convergence of Kij"o# "Theorem 5#\ we deduce eqn "3[32#[ From the existence of the solution
u"o# "Theorem 1# and the de_nitions "2[04#Ð"2[06# it follows that

sa2"o# is in L1"V# :
i

L1"−0\ 0^ H−0"S## and s22"o# is in L1"V# :
i

L1"−0\ 0^ H−1"S##[

From eqns "2[00#Ð"2[02# we have

dsa2"o#
dz

¦1Ga
b2s

b2"o#¦Gb
b2s

a2"o# � −"sab
\b "o#¦Ga

bts
tb"o#¦Gb

bts
at"o##−f a^ "3[43#

sa2"o#"−0# � −h¹a
−^ "3[44#

ds22"o#
dz

¦Ga
a2s

22"o# � −"s2a
\a "o#¦G2

ats
ta"o#¦Gb

bts
2t"o##−f 2^ "3[45#

s22"o#"−0# � −h¹2
−[ "3[46#

Equations "3[43#Ð"3[46# are di}erential equations with Lipschitz continuous vector _eld[ They
therefore have solutions de_ned for all z in ð−0\ 0Ł which satisfy the initial conditions "3[44# and
"3[46#[ The right!hand of eqn "3[43# is uniformly bounded because of eqn "3[32#[ Multiplying eqn
"3[43# by sa2"o#\ integrating over V and applying Ho�lder|s inequality\ we deduce that

s
a

d
dz

>sa2"o#>1 ¾ C s
a

>sa2"o#>1¦C "3[47#

and from Lemma 5\ sa2"o# is bounded in L1"V#^ consequently converges weakly in L1"V# to sa2 and
strongly converges in L1"−0\ 0^ H−0"S##[ We deduce from this convergence that eqns "3[36# and
"3[37# are satis_ed[

Multiplying eqn "3[45# by s22"o#\ integrating over V and applying Ho�lder|s inequality we deduce
in the same way through Lemma 5 and the boundedness of sa2"o# that s22"o# is bounded in L1"V#
and consequently converges weakly to s22 in L1"V# and strongly in L1"−0\ 0^ H−1"S##[ Similarly
we deduce that eqns "3[40# and "2[41# are satis_ed[

The eqn "3[36# also implies that dsa2:dz is in L1"−0\ 0^ H−0"S## and therefore sa2 is in H0"−0\
0^ H−0"S##[ Similarly we deduce from eqn "3[40# that s22"o# is in H1"−0\ 0^ H−1"S##[

The eqns "3[36# and "3[40# are also equivalent to

sab
:b ¦sa2

:2 ¦f a � 9 in V^ "3[48#

s2b
:b ¦s22

:2 ¦f 2 � 9 in V[ "3[59#

Let v �"va\ v2#\ va in H0
9"S#^ v2 � zv¹2\ v¹2 in H1

9"S# be used in the scaled equation "2[09#[ Then
e22"v# � v¹2 and passing to the limit\ we obtain

gV
"sabeab"v#¦sa2ea2"v#¦s2be2b"v#¦s22e22"v## dV

� gV
f ava dV¦gS

"h¹a
¦¦h¹a

−#va dS¦gV
f 2v2 dV¦gS

"h¹2
¦−h¹2

−#v¹2 dS[ "3[50#
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Multiplying eqn "3[48# by va and eqn "3[59# by v2 and integrating\ from Green|s formula and eqn
"3[50#\ we obtain

gS

"sa2"0#−sa2"−0##va dS¦gS

"s22"0#¦s22"−0##v¹2 dS

� gS

"h¹a
¦¦h¹a

−#va dS¦gS

"h¹2
¦−h¹2

−#v¹2 dS[ "3[51#

Since va and v¹2 are arbitrary test functions\ we deduce that

sa2"0# � sa2"−0#¦h¹a
¦¦h¹a

− � h¹a
¦^ "3[52#

s22"0# � −s22"−0#¦h¹2
¦−h¹2

− � h¹2
¦^ "3[53#

and eqns "3[38# and "3[42# are satis_ed[ E

Remark[ Though the convergence of the shear stresses sa2"o# and s22"o# are strong in the spaces
H0"−0\ 0^ H−0"S## and H1"−0\ 0^ H−1"S##\ respectively\ they are in fact very {weak|[ Because s22

belongs to H1"−0\ 0^ H−1"S## it should be noted that s22 can be a localized stress and such a stress
distribution is of paramount interest in junctions of multi!structures[

From the convergence established and the relation between the scaled and de!scaled stresses
"2[07# we deduce that the real stress

s22"xo# : 9 as o : 9 in L1"V#[ "3[54#

Unlike in plate theory "Destuynder\ 0875# the exact formula of sa2 and s22 cannot be expressed
but these stresses can be computed numerically by approximating eqns "3[36# and "3[37# and "3[40#
and "3[41#[

In the exact two!dimensional problem "3[14#\ one will have to compute integrals of the form

NÞn �"NÞabgd
n "x¹ ## � 0g

0

−0

r"x¹ \ z#znNabgd"x¹ \ z# dz1\ n � 9\ 0\ 1\ 2\ 3^ x¹ �"x0\ x1#^ "3[55a#

because of the particular form in eqn "3[07# of eab"v#\ v in Vkl[ If the exact expression of "m−0#a
b "see

Section 1# is used in eqn "3[25#\ then in eqn "3[55# one will have to compute integrals of rational
polynomials S7

m�9 pm"z#:r¹ "z# where the degree of r¹ "z# �"r"x¹ \ z##2 is 5 and that of pm"z# is m[
The exact expression is complex but not necessary since numerical integration can easily be

implemented[
Let eab"u"9## � eab"u¹#−zkab"u¹#¦z1Qab"u¹#\ z � x2 and eab"v# � eab"v¹#−zkab"v¹#¦z1Qab"v¹# and let

us denote e"u"9## � e−zk¦z1Q\ e"v# � e¹−zk¹¦z1QÞ\ where u¹ �"ja\ j2#\ v¹ �"ha\ h2# is in
"H0

g9
"S##1×H1

g9
"S#^ then\ by using the de!scaling relations

jo
a"x0\ x1# � o1ja"x0\ x1#^ jo

2"x0\ x1# � oj2"x0\ x1# for all "x0\ x1# $ SÞ^

bo
ab � obab\ "bo# �

0
o
"b#a

b\ zo � oz\ z � x2^

and replacing NÞn by
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Fig[ 3[ Sti}ened shells[

NÞo
n �"NÞo\abgd

n # � 0g
o

−o

r"x¹ \ z#znNabgd"x¹ \ z# dz1\ n � 9\ 0\ 1\ 2\ 3^ x¹ �"x0\ x1#\ "3[55b#

the two!dimensional variational equation of the real shell deduced from eqn "3[14# now reads]

find"jo
a\ jo

2# $"H0
g9
"S##1×H1

g9
"S# such that

gS

"NÞo
9e] e¹¦NÞo

1k] k¹¦NÞo
1e] QÞ¦NÞo

1Q] e¹¦NÞo
3Q] QÞ−NÞo

0e] k¹−NÞo
0k] e¹−NÞo

2k] QÞ

−NÞo
2Q] k¹# dS � LÞo"v¹#[ "3[56#

The exact expression of LÞo can be deduced easily from LÞ[ The variational eqn "3[56# is well
de_ned and the corresponding boundary!value problem can be deduced as shown below[ Finite
element methods can then be implemented to compute the exact two!dimensional displacements
"jo

a\ jo
2#\ the three!dimensional displacements uo �"uo

i #\ the in!plane stresses sab
o ðsee scaled formula

"3[31#Ł and shear stresses si2
o as indicated[

We recall that if the usual assumptions on thin shells are admitted\ except the _rst two terms of
the left!hand side of eqn "3[56#\ all the others will disappear and the right!hand side will have to
be modi_ed because of the form of the limit displacement[ Because of the Taylor expansion of
r"m−0#a

b\ we shall be interested in the best _rst!order equations which have similarities with
equations widely used in engineering[

4[ The best _rst order two!dimensional problem

The Taylor expansion of "m−0#a
b given in Lemma 0 can also be written as

"m−0#a
b � da

b¦zba
b¦ s

n−1

zn"bn#a
b\ z � x2[
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Recall that "`ab# �"m−0#a
g "m−0#b

ta
gt and r"x¹ \ z# � 0−zba

a¦z1"b0
0b

1
1−b0

1b
1
0#[ Using these expressions\

the left!hand side of the two!dimensional scaled variational eqn "3[14# or "3[56# takes the form

A0"u¹\ v¹#¦zba
tB

t
a"u¹\ v¹# � LÞ"v¹# � gS

"paha¦p2h2# dS¦gg0

"qaha¦q2h2# dg¦gg0

maua dg "4[0#

where A0 and Bt
a are continuous bilinear forms^ with

A0"u¹\ v¹# �
1E

0−n¹1 gS

ð"0−n¹#eab"u¹#¦n¹em
m"u¹#aabŁeab"v¹# ds

¦
1E

2"0−n¹1# gS

ð"0−n¹#Kab"u¹#¦n¹Km
m"u¹#aabŁKab"v¹# ds

¦
1E

2"0−n¹1# gS

ð"0−n¹#eab"u¹#¦n¹em
m"u¹#aabŁQab"v¹# ds

¦
1E

2"0−n¹1# gS

ð"0−n¹#Qab"u¹#¦n¹Qm
m"u¹#aabŁeab"v¹# ds

¦
4E

4"0−n¹1# gS

ð"0−n¹#Qab"u¹#¦n¹Qm
m"u¹#aabŁQab"v¹# ds "4[1#

LÞ"v¹# � gS

ðpaha¦p2h2Ł ds¦gg0

ðqaha¦q2h2Ł ds¦gg0

maua dg^ "4[2#

pa � g
0

−0

f twa
t "z# dz¦ht

¦wa
t "0#¦h¹t

−wa
t "−0#^ wa

t "z# � da
t−zba

t¦z1ba
nbn

t\ "4[3#

p2 � g
0

−0

f 2 dz¦h¹2
¦¦h¹2

−−1t ðfaw¹ t
a"z# dz¦h¹a

¦w¹ t
a"0#¦h¹a

−wt
a"−0#Ł^ w¹ a

t "z# �"−zdt
a¦z1bt

a#\

"4[4#

qa � g
0

−0

h¹a dz−g
0

−0

zba
gh¹g dz\ "4[5#

q2 � g
0

−0

h¹2 dz\ "4[6#

ma � g
0

−0

zh¹a dz−g
0

−0

z1ba
gh¹g dz\ m � maaa � maa

a^ "4[7#

ua � −"bg
ahg¦9ah2#\ "4[8#

u¹ �"ja\ j2# is in "H0
g9
"S##1×H1

g9
"S#\ v¹ �"ha\ h2# is in "H0

g9
"S##1×H1

g9
"S#[ "4[09#
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All terms in bold are new[ In the forces they are proportional to x � h:R or x1 because of the
particular form of the displacement[ It should be observed that the _ve terms found in A0"u¹\ v¹# are
the _rst!order terms in the Taylor expansion\ of NÞ9\ NÞ1\ NÞ3[ First!order terms related to NÞ0 and NÞ2

disappear because they are skew!symmetric[ They will also appear if the material distribution is
not transversally symmetric as may be the case if the thickness is not the same on both sides of the
midsurface " for example\ sti}ened shells\ see Fig[ 3#[

The best _rst!order variational equation is de_ned by

find u¹ �"ja\ j2# in "H0
g9
"S##1×H1

g9
"S#\ "4[00#

A0"u¹\ v¹# � LÞ"v¹#\ v¹ �"ha\ h2# in "H0
g9
"S##1×H1

g9
"S#[ "4[01#

Theorem 7[ The best _rst order variational eqns "4[00# and "4[01# have a unique solution u¹0[ Let
u¹ be the solution of the full two!dimensional variational eqn "3[14# or "4[0#\ then there exists a
constant C × 9 such that

>u¹−u¹0> ¾ Cx\ x � h:R[ "4[02#

Proof[ We shall _rst show the elipticity of eqn "4[01#[ Let the symmetric tensor AÞ be de_ned by

AÞabdt �
E

0−n¹1 $n¹adtaab¦
"0−n¹#

1
"aadabt¦aatabd#%\ "4[03#

then there exists a constant C such that for every symmetric tensor s¹ �"sab#

AÞs¹ ] s¹ − Cs¹ ] s¹ "4[04#

Using AÞ we have]

A0"u¹\ u¹# � 1 gS

AÞe] e dS¦
1
2 gS

AÞk] k dS¦
3
2 gS

AÞe] Q dS¦
1
4 gS

AÞQ] dS\

� 1 gS

AÞe] e dS¦
1
2 gS

AÞk] k dS¦
1
4

x1 gS

AÞ
4
2

e] Q dS¦
1
4 gS

AÞQ] Q dS[

� 1 gS

AÞe] e dS¦
1
2 gS

AÞk] d dS¦
1
4 gS

AÞ0Q¦
4
2

e1] 0Q¦
4
2

e1 dS−
1
4 gS

AÞ
4
2

e]
4
2

e dS\

−
7
8 gS

AÞe] e dS¦
1
2 gS

AÞk] k dS¦
1
4 gS

AÞ0Q¦
4
2

e1] 0Q¦
4
2

e1 dS

− C gS

AÞe] e dS¦gS

AÞk] k dS − C">e>1¦>k>1#[

We deduce from Lemma 1 that the coercivity of A0"u¹\ u¹# and consequently the existence and
uniqueness of u¹0[

From eqns "4[0# and "4[01# we deduce by subtraction that for every v¹ �"ha\ h2# in
"H0

g9
"S##1×H1

g9
"S#
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A0"u¹−u¹0\ v¹# � −zba
tB

t
a"u¹\ v¹#[

By letting v¹ � u¹−u¹0\ we deduce from the continuity of Bt
a"u¹\ v¹# and the elipticity of A0 that

>u¹−u¹0>1 ¾ C>u¹>>u¹−u¹0>x

since =zba
t = ¾ x and eqn "4[02# is proved[ E

Let "u\ s# and "u0\ s0# be the displacement and the stress in the shell V computed after the full
two!dimensional shell eqn "3[14# and the best _rst order two!dimensional eqn "4[01#\ respectively\
then as a consequent of eqn "4[02# we also have

>u−u0> ¾ Cx\ "4[03#

>s−s0> ¾ Cx[ "4[04#

These estimations show that it may be su.cient to consider the best _rst!order two!dimensional
shell equations for certain practical cases[ It should be observed that the bilinear form A0 can also
be decomposed as A0 � A9¦B9 where A9 is the usual bilinear form found in thin shell for the linear
Koiter|s model[ Let u9 be the solution found in thin shell[ Using the same arguments as in Theorem
7 it is also deduced that there exists a constant C such that

>u0−u9> ¾ Cx\ and >s0−s9> ¾ Cx[ "4[05#

It follows immediately that >u−u9> � 9"x# and >s−s9> � 9"x#[ These estimations show that
the general model found in this framework eqn "3[14# or "3[56# or the best _rst!order model\ eqn
"4[01#\ are suitable for thin shells[ Moreover\ they provide estimations on the errors committed
when the classical model for thin shells is used[

If necessary\ instead of the full equation\ a best second! or third!order variational equation may
rather be used by considering additional terms in eqn "4[0# and this will lead to >u−up> � 9"xp#\
and >s−sp> � 9"xp#\ p � 1\ 2\ [ [ [ These considerations will depend on the type of practical
problems to be solved[

We shall now present the de!scaled two!dimensional boundary value equations by using the de!
scaling relations on the transverse displacement jo

2\ the in!plane displacements jo
a and the curvature

tensor "bo#a
b]

jo
a"x0\ x1# � o1ja"x0\ x1#^ jo

2"x0\ x1# � oj2"x0\ x1# for all "x0\ x1# in SÞ "4[06#

bo
ab � obab\ "bo#a

b �
0
o
"b#a

b\ zo � oz\ z � x2^ "4[07#

the shell displacement consequently satis_es the relations]

uo
a"xo# � o1ua"9#"x#^ uo

2"xo# � ou2"9#"x# � oj2"x0\ x1#[

Let t\ n be the unit tangent and outer normal vectors\ respectively\ on the border g0 of S[ Let n\ t\
a2 form a direct orthonormal basis in IR2 and n¹ �"ha\ h2# in "H0

g9
"S##1×H1

g9
"S#[ We de_ne

nn � −n ="bb
ahb¦9ah2#aa\ nt � −t ="bb

ahb¦9ah2#aa^

then
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gg0

maua dg � gg0

"msnn¦mnnt# dg\ ms � m = n\ \mn � m = t

where ms and mn are ~exural and torsional moment density\ respectively\ on the border g0 of S[ We
shall denote by ms

o\ mn
o \ pa

o \ p2
o \ qa

o \ q2
o the homologous of ms\ mn\ pa\ p2\ qa\ q2 obtained after de!

scaling by replacing all variables X found in the integrals by their homologous Xo and integrating
from −o to o[

Let u¹ o �"jo
a\ jo

2#

Nab
o �

1oE o

0−n¹1
ð"0−v¹#eab"u¹ o#¦n¹er

r"u¹ o#aabŁ\ "4[08#

Mab
o �

1o2E o

2"0−n1#
ð"0−n¹#kab"u¹ o#¦n¹kr

r"u¹ o#aabŁ\ "4[19#

MÞ ab
o �

1o2E o

2"0−n¹1#
ð"0−n¹#eab"u¹ o#¦n¹er

r"u¹ o#aabŁ\ "4[10#

NÞ ab
o �

1o2E o

2"0−n¹1#
ð"0−n¹#Qab"u¹ o#¦n¹Qr

r"u¹ o"aabŁ\ "4[11#

Mþ
�

ab
o �

1o4E o

4"0−n¹1#
ð"0−n¹#Qab"u¹ o#¦n¹Qr

r"u¹ o#aabŁ[ "4[12#

The best _rst!order two!dimensional de!scaled shell variational equation is]

gS

"No ] e"v¹#¦Mo ] k"v¹#¦NÞo ] e"v¹#¦MÞ o ] Q"v¹#¦M
�

o ] Q"b¹ ## dS

� gS

ðpa
o ha¦p2

o h2Ł ds¦gg0

ðqa
o ha¦q2

o h2Ł ds¦gg0

"ms
onv¦mn

ont# dg^

v¹ �"ha\ h2# is in "H0
g9
"S##1×H1

g9
"S#[ "4[13#

The _rst two terms on the left are those found in thin shells[ The upperscored membrane stress
tensor NÞ\ the upperscored and double upperscored ~exural moment stress tensors MÞ and M

�

"respectively# are new terms which modify the usual in!plane stress and moment[ From their
de_nitions we deduce that]

the membrane stress is No¦NÞo while the moment is Mo¦MÞ o¦M
�

o[

In most computer aided design programs steel reinforcements are computed by using No and
Mo[ One will have to replace No by No¦NÞo and Mo by Mo¦MÞ o¦M

�

o "Capra and Maury\ 0867#[

Let us recall the two!dimensional covariant version of Green|s formula]
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gS

9aM
ab dS � g1S

Mabva dg or gS

9aM
abvb dS � −gS

Mab9avb dS¦g1S

Mabvavb dg[

We shall denote by

bn
t � btav

a\ bt
t � btat

a\ Mnt � Mabvatb\ 1s � 1t\ Mnt � Matva\ ua � −"bg
ahg¦9ah2#[

From the variational equation and by using Green|s formula and the above de_nitions\ pro!
ceeding as Bamberger "0864#\ we derive the following boundary value problem]

on S]

pb¦9aN
ab¦1"9aM

at#bb
t¦Mat"9tb

b
a#¦9a"MÞ gabt

g#bb
t¦9aNÞab¦9a"M

�
gabt

g#bb
t � 9\ "4[14#

−p2¦9a9bM
ab−Nabbab−bb

tbabM
at¦9a9b"MÞ tbba

t#−NÞabbab¦9a9b"M
�

tbba
t � 9\ "4[15#

on the free border g0]

Nnb¦Mntbb
t¦"Mnt−mn#bb

t−qb¦MÞ ntbt
tbb

t ¦NÞgb¦M
�

ntbt
tbb

t � 9\ "4[16#

9bM
abna−1s"mn−Mnt#¦q¦9b"MÞ atbb

t #na¦9b"M
�

atbb
t #na¦1s "MÞ ntbt

t¦M
�

ntbt
t# � 9\ "4[17#

Mnn¦ms¦MÞ ntbn
t¦M

�
ntbn

t � 9\ "4[18#

on the clamped border g9]

ji � 9\ 1nj2 � 9[ "4[29#

We have voluntarily omitted the subscripts o on bo
ab and "bo#b

a [ The real displacements in the shell
is

uo
a"x0\ x1\ zo# � jo

a−zo"1bot
a jo

t¦9aj
o
2#¦"zo#1"bot

a bog
t jo

g¦bot
a 9tj

o
2#\ "4[20#

uo
2"x0\ x1\ z2# � jo

2^ "4[21#

and the stresses sab"x0\ x1\ zo# are given by

sab
o "x0\ x1\ zo# �

0
1o

Nab
o −

2zo

1o2
Mab

o ¦
4"zo#1

1o4
M
�

ab
o ^ "4[22#

while the shear stresses sa2
o "x0\ x1\ zo#\ s22

o "x0\ x1\ zo# are computed by solving eqns "3[36# and
"3[37# and "3[40# and "3[41# in which the subscript o is added to homologous terms[

The upperscored terms are non classical terms while the others are those found in engineering
literature[ From their de_nitions these new terms are related to the third fundamental from[ Their
energy contribution can then be estimated and will thus enable engineers to choose one model or
the other[ We recall again that the form of the variational eqn "4[13# is due to the transverse
symmetric distribution of material across the midsurface and so depend on the form of the in!
plane stresses[
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5[ Discussion and comments

We _rst recall that the geometry of the shell is general[ We only imposed the condition that
x ³ 0 "which implies that r × 9 eqn "1[4## and the local chart be at least W1\� "which means that
C0 midsurface are considered because of the compact embedding of W1\� in C0#[ The usual classical
condition C2 is consequently treated[ No uniform elipticity condition is imposed on the midsurface[
The two!dimensional model of the real shell eqn "3[56# "which is the main objective of this paper#\
obtained from eqn "3[14# through the de!scaling relations and integrations was deduced from
the three!dimensional problem and strong convergence results have been proved[ No a priori
assumptions whether of a geometrical or mechanical nature were made[ The fact that the modulus
tensor on the midsurface depends on the thickness and the curvature is in fact natural[ Clearly two
clamped spherical slabs\ one convex\ the other concave do not o}er the same resistance to the
same transversal loading[ The estimations in Section 4 show that this model can be used for thin
shells\ membrane or ~exural shells as well as thick shells[

It should be recalled that in our approach the small parameter is half the thickness h[ The
parameter x � h:R found in earlier mechanics appears naturally because the full expression of the
contravariant basis vector `a is used[ Because of this\ the parameter x appears in the strain tensor\
eqn "3[07#\ in the modulus tensor\ eqn "3[55# and consequently in eqn "3[56#[

The main di}erence between our _nal displacement and that found in the literature is due to the
following reason[ In the classical framework used in thin shell\ the basis vectors of the unscaled
shell Vo are still assumed to be basis vectors of the scaled shell V[ This hypothesis induces an
approximation on the scaled metric[ Moreover the contravariant basis vector `a

o is approximated
and in the limit\ is equal to ¹̀a �"da

b¦zba
b#ab in the scaled shell[

It should also be noted that this is exactly the _rst order approximation of "m−0#a
ba

b "see Lemma
0#[ The limit displacement obtained u¹a � ja−z9aj2\ u¹2 � j2 "which is the classical Kirchho}ÐLove
displacement# is expressed in the basis "aa\ a2# instead of the basis " ¹̀a\ a2#[ It should be noted that
this Kirchho}ÐLove displacement satis_es the equations ei2"u# � 9\ in which the expressions of the
shear strain ei2"u# have been approximated[ By neglecting certain terms of the scalar product
"I¦9u#A2 = aa "A2 is a normal vector to the midsurface and aa is a tangent basis vector of the
deformed midsurface# one obtains "I¦9u#A2 = aa ¼ 9 and the classical assert] that a Kirchho}Ð
Love displacement transforms normals to the midsurface to normals to the deformed midsurface
is thus deduced[

Because of these same approximations it is also said that a ReissnerÐMindlin displacement
ua � ja−zua"x0\ x1#\ u2 � j2 where ji\ ua are _ve unknown functions is not a Kirchho}ÐLove
displacement[ In this framework\ the exact expressions of ei2"u# are used^ it appears that both the
classical Kirchho}ÐLove and ReissnerÐMindlin displacements are linear approximations of the
_nal Kirchho}ÐLove displacement we have obtained[ In fact the exact transverse shear strains of
the classical Kirchho}ÐLove displacement are oa2"u# � bt

au¹t:1 � 9[ Such a displacement is therefore
inadmissible because it is shear strain free in thick shells "the resultant deformation is not planar#[
Moreover Qab"u¹# � 9[ By using thin shell model\ the following term in the deformation energy

"0:1# gS

"NÞo
1e] Q¦NÞo

1Q] e¦NÞo
3Q] Q−NÞo

0e] k−NÞo
0k] e−NÞo

2k] Q−NÞo
2Q] k# dS

disappears and by applying _nite element methods\ sti}ness matrix obtained in this way will
obviously be ill!conditioned[
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The ReissnerÐMindlin displacement gives a better result in computational mechanics when a
plate is {moderately thick| probably because it is a better linear approximation of the displacement
of a thick shell[

The new terms that appear in our model and the correction that naturally appears on the
strains may probably ameliorate {the locking phenomenon| encountered in numerical computation\
because their energy contribution will modify sti}ness matrix "Chapelle\ 0884#[

Clearly the limit displacement found in our approach which is a Kirchho}ÐLove displacement
"yields planar deformation# does not transform normals to the midsurface to normals to the
deformed midsurface[ So also the NavierÐBernoulli displacements on beams or rods are reviewed
in this framework[

It is well known in practice that cross sections of beams with great height do not satisfy the
NavierÐBernoulli displacement principle[

Though the ReissnerÐMindlin displacement does not transform normals to the midsurface to
normals to the deformed midsurface\ Reissner|s approach is di}erent[ It is based on the geometrical
assumption that the three!dimensional displacement is of the form stated\ but this assertion is yet
to be mathematically substantiated[

Another theory which provides non classical Kirchho}ÐLove displacement consists of imposing
a formal power series expansion of the three!dimensional solution and to construct the successive
terms "Goldenveizer\ 0852\ 0853#[ In this approach some a priori restrictive mechanical assump!
tions are imposed on the stress and strain distribution across the midsurface[ Some di.culties arise
on the boundary conditions[ Convergence results are still to be improved[

Naghdi|s approach imposes at the beginning of the analysis a geometrical assumption on the
type of displacement that the shell undergoes "displacement with _ve unknown functions# and a
mechanical assumption on the stress _eld "planar stress distribution#[ Such assumptions have not
been deduced from the three!dimensional model[

In Section 4 we emphasized on the best _rst!order approximation of the full variational eqn
"3[56# because the surface rigidities may be expensive in computation[ In some practical cases
because of the error estimate established\ only an n!th approximation of these rigidities may be
su.cient[ Unlike in the power series expansion method\ the n!th approximate solution which in
our approach is the solution of eqn "3[56# with approximate surface rigidities is still of the form
of eqns "3[05# and "3[06# and therefore satis_es boundary conditions[

Our limit displacement can be written as

ua"x0\ x1\ z# � ja"x0\ x1#¦zua"x0\ x1#¦z1ca"x0\ x1#\ u2"x0\ x1\ z# � j2"x0\ x1#[

This approach is appropriate to study torsional loading and will probably yield better results if
the seven functions are considered as independent unknowns[ Such displacements are shear strain
free[ It will be much easier to implement numerically since it will only require _nite elements of
class C9 "Ciarlet\ 0867#[

A general displacement for shells of the form ui"x0\ x1\ z# � ji"x0\ x1#¦zui"x0\ x1#¦z1ci"x0\ x1#
yields di}erent results probably more realistic as it preserves the shear strain and transversal
deformation[ Details on this approach will be presented in Nzengwa "0887b#[

Another important aspect of this model is that it ca be applied to sti}ened shells[ In reality a
sti}ened shell can neither be considered as a thin shell nor a {moderately thick shell| because in
certain cases the sti}eners may be very thick locally and it may be impossible to mesh such a three!
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dimensional structure if _nite element method is used for computation "Fig[ 3#[ Our model will
still be applied provided x � h:R ³ 0[ If the midsurface is not sti}ened symmetrically then the
shell can be immersed in a symmetric sti}ened shell "obtained by re~ection over the midsurface
for example# and the rigidities "3[55b# will be integrated in the real shell[

In certain computer programs widely used\ the sti}eners are considered as beam elements while
the rest of the shell is assumed to be thin[ Particular _nite elements are used at the junctions
between the shell "rest of the shell# and the sti}eners "Combescure\ 0883#[ Though numerical
computations have been performed\ no mathematical justi_cations have been provided[ Such
complex _nite elements are not necessary in our approach[ It can be deduced from our displacement
_eld that no part of a cross section of the shell undergoes beam displacement[ In sti}ened shells\
even if the best _rst order two!dimensional model is used\ the _nal shell equation will be non!
homogeneous[ In most practical cases the midsurface distribution of the rigidities will be periodic
or even almost periodic and may vary rapidly[ Homogenizing rigidities so obtained is of great
practical interest[ These aspects have also been analyzed by the authors[

The authors have also analyzed the e}ect of this model in the elastic dynamic behaviour of thick
shells and the non!linear elastic model for thick plates[ This approach will be extended to the
elasto!plastic analysis and the junctions of shells in a rather inherent slightly di}erent approach of
that found in Ciarlet et al[ "0878#[
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